Configuration Dynamics Verification Using UPPAAL

David Fabian Radek Marik

Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague

30/08/2013

o Introduction

9 Configuration Hierarchical Model
e Freeconf

© uPPAAL

a Configuration Model Checking

e Results & Conclusion

m Software applications become more and more complex
m Internal dynamics can be very complicated and hard to maintain
m Imperative style of programming not optimal

m Needs for (semi)automatic verification of soundness and completeness of
the implementation

Software Configuration

Module composition
m Composition of software modules into an application that fulfills requirements
Options settings
m Deployment and maintenance of a finished application
m Adjustments to a fixed set of configuration options (keys)
m There exist general-purpose configuration tools to help with configuration
changes such as KConfigXT and Freeconf

Configuration Dynamics

m Keys are usually organized into hierarchical structures
m Each key has some private properties — internal key state
m The user can interact with the tool and change values of keys

m Any change can lead to other changes depending on the semantics of
configuration options

m Dynamical behavior gets complicated for tools with many internal key
states

Configuration model
Declarative description of the dynamics
Model-checker

Configuration Hierarchical Model

m Hierarchical model is a rooted acyclic graph

m Every node has a unique ID, its parent ID, and a list of its successor IDs
m Nodes have internal states

m The internal state is a set of Boolean and bounded integer properties

1

O

Propagation Rules

Propagation rules describe dynamical changes of the hierarchical model
They are of the form A — B, A is the head, B is the body

Head is always bound to a specific node

Body is a non-empty set of variables assignments

If the head is satisfied, the rule fires and the body is executed

++ and —- syntactic sugar is present to raise or lower the value of a
variable by one

Example Model

1

N

2 3
M={(1,0,{2,3}, (bool{, book int{,{0,1,2})) ,
(2,1,0, (bool2, bools, int?, {0,1,2})) ,
(3,1,0, (bool?, bool3, int},{0,1,2})) } .

m Whenever bool; is false for node two, bool, must also be false for that
particular node

m Whenever book is true and int; is greater than one in node three, the
value of the parent’s int; must be two

-bool? — bool? = false
bool3 A int} >1 — int] =2

Freeconf

m Multi-platform configuration utility developed at FNSPE

m Organizes keys into configuration sections

m Support for hundreds or thousands of keys

m GUI must be clear and simple, optional keys should be hidden

m Every key has a set of properties that describes its
importance (mandatory, active, inconsistent, etc.)

10/22

Freeconf GUI (full detail)

Virtual hosts settings

Server Virtual host settings

Listen

@ 80 < Add Entry
h. tual | ,,i
= Remove Entry

@ £+ Move Up
Security ¥ Move Down
: NameVirtualHost
“log/
Lgéing localhost < Add Entry
= Remove Entry
i £+ Move Up
ssk-tab
. & Move Down |
VirtualHost
localhost <= Add Entry
= Remove Entry
4 MoveUp
¥ Move Down
advanced | 0K Apply Cancel

11/22

Freeconf GUI (simplified)

Wirtual Hosts

| Show advanced |

General server settings

Server settings

Server Root | jetc/apache2

| OK || Apply || Cancel

12/22

Freeconf Configuration Model

m Straightforward to encode Freeconf model as a hierarchical configuration
model

m Two types of nodes — configuration keys and configuration sections

m Key internal state formed by eight Boolean variables

m Section internal state formed by three Boolean and four integer counters
m Propagation rules expressive enough to describe Freeconf’s dynamics

13/22

UPPAAL Model-Checker

m Joint project of Upsalla and Aalborg University
m Model-checker utility of real-time dynamic systems with Java GUI
m Visual modeling and C-like programming

m Support for integer and Boolean variables, arrays, and automata
templates

m Automata can be synchronized by channels
m Operates on a subset of Timed Computational Tree Logic (TCTL)
m Custom query language

14/22

UPPAAL Graphical User Interface

ile Edit View Tools Options Help
BIEIE] alala[wl@-

(i Editor | Simulator ’/Verifier ‘

~|e|

Drag out

[Project

[Declarations
¢ ‘3 Node
- g User
'8 Undefined
& *3 DynamicMan il ShowAllToggled
o DynamicAct
& InitBarrier
o3 Inconsistent
o3 section
o S Empty
o S NodeSectionDispatch:
o 8 sectionDispatcher
o '8 ToplevelTerminator

[system declarations

Name: [Node Parameters: [const id_k id

!propagationinProgress
showAllChangelid]!

showAllToggle?
propagationinProgress = true

smar(id] = sm,
sactlid] = sa,
defvalsetlid] = dv,
valset{id] = va,
valuesinitialized = valuesinitialized + 1

t[0. 1]
1t[0, 1]
int[0, 1]

Initial

15/22

Queries

E <> forall(i : id_s)manCounter[i] < 0

m Query usually starts with a quantifier and a path modality
m Array indexing is supported

m UPPAAL can be set to produce counter-examples

m Nested modalities are not supported

16/22

Freeconf model in UPPAAL

m Key properties modeled as global arrays
m Hierarchy nodes modeled as automata templates Node and Section
m Hierarchy structure encoded as 2D arrays

m Properties propagation modeled using channel synchronization and
global variables

m Rule heads and bodies hard-wired as automata
m Auxiliary data structures needed to enforce causality

17/22

Section Automaton

ActivityChildChangelnc ActivityChildChangeDec

dactCounterlnclid]?
qctCounter{id] = actCoun:

checkEmptiness[id]! FtCounterDeclid]?

InconsistentChildChangelnc {Counter{id] = actCounterlid] - 1

incCounterindid]?
incCounterlid] = incCoty

checkEmptiness{id]!

AmanCounterinclid]? e MandatoryChildChangelnc
manCounter{id] = ma; srffd] + 1

checkEmptiness[id]t checkEmptinessiid]t
showAllRevalidatelid dmanCounterDeclid]?
nCounter{id] = manCounterfid] - 1

ShowAllActiveChange checkEmptinesslid]!

heckE mptinessid

incCounterDed{id]}

MandatoryChildChangeDec
incCountertid] =

terfid] - 1

checkEmptihe;
nptiness[id]!

#CkE mptiness(i QH o]

sectionShownCounterinc[id]?
sectionshownCounterlid] = sectionShownCounterlid] + 1

SectionshownCounterinc

sectionShownCountgrpec(id]?
sectionShownCounterfid] = sectionShownCounter{

InconsistentChildChangeDec

SectionShownCounterDec

18/22

Tested Instances

m Freeconf model can be arbitrarily large
m Only a small subset of models tested
m Deficiencies in Freeconf revealed by the verification

(a) (b) (©

19/22

Model | Time (s) | Memory (KiB) # of states
a 0.07 6889 16384
b 1.67 24572 21233664
c 189.1 2147932 17592186044416

m Configuration hierarchical model defined
m Freeconf configuration dynamics encoded into the hierarchical model
m Freeconf model encoded into UPPAAL

m Several Freeconf instances verified by UPPAAL on Intel Core 2 Quad
Q9550 CPU at 2.83 GHz, 4 GiB RAM, running 64 bit Linux 3.1.10

20/22

Conclusion

m UPPAAL easy to use but too general

m Substantial amount of auxiliary code necessary, re-verification
problematic

m Custom domain-specific model-checker needed in the future

m Attempts to design the model-checker in Constraint Handling
Rules (CHR)

m All propagation rules should be held at one place
m Re-verification should be easy

21/22

Thank you for your attention!

	Introduction
	Configuration Hierarchical Model
	Freeconf
	UPPAAL
	Configuration Model Checking
	Results & Conclusion

