
Configuration Dynamics Verification Using UPPAAL

David Fabian Radek Mařík

Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering

Czech Technical University in Prague

30/08/2013



Outline

1 Introduction

2 Configuration Hierarchical Model

3 Freeconf

4 UPPAAL

5 Configuration Model Checking

6 Results & Conclusion

2 / 22



Motivation

Software applications become more and more complex
Internal dynamics can be very complicated and hard to maintain
Imperative style of programming not optimal
Needs for (semi)automatic verification of soundness and completeness of
the implementation

3 / 22



Software Configuration

1 Module composition
Composition of software modules into an application that fulfills requirements

2 Options settings
Deployment and maintenance of a finished application
Adjustments to a fixed set of configuration options (keys)
There exist general-purpose configuration tools to help with configuration
changes such as KConfigXT and Freeconf

4 / 22



Configuration Dynamics

Keys are usually organized into hierarchical structures
Each key has some private properties — internal key state
The user can interact with the tool and change values of keys
Any change can lead to other changes depending on the semantics of
configuration options
Dynamical behavior gets complicated for tools with many internal key
states

5 / 22



Verification

1 Configuration model
2 Declarative description of the dynamics
3 Model-checker

6 / 22



Configuration Hierarchical Model

Hierarchical model is a rooted acyclic graph
Every node has a unique ID, its parent ID, and a list of its successor IDs
Nodes have internal states
The internal state is a set of Boolean and bounded integer properties

1

2 3

7 / 22



Propagation Rules

1

2 3

Propagation rules describe dynamical changes of the hierarchical model
They are of the form A → B, A is the head, B is the body
Head is always bound to a specific node
Body is a non-empty set of variables assignments
If the head is satisfied, the rule fires and the body is executed
++ and -- syntactic sugar is present to raise or lower the value of a
variable by one

8 / 22



Example Model

1

2 3

M = {
(
1, ∅, {2,3} ,

(
bool11 ,bool12 , int1

1 , {0,1,2}
))

,(
2,1, ∅,

(
bool21 ,bool22 , int2

1 , {0,1,2}
))

,(
3,1, ∅,

(
bool31 ,bool32 , int3

1 , {0,1,2}
))

} .

Whenever bool1 is false for node two, bool2 must also be false for that
particular node
Whenever bool2 is true and int1 is greater than one in node three, the
value of the parent’s int1 must be two

¬bool21 → bool22 = false

bool32 ∧ int3
1 > 1 → int1

1 = 2

9 / 22



Freeconf

Multi-platform configuration utility developed at FNSPE
Organizes keys into configuration sections
Support for hundreds or thousands of keys
GUI must be clear and simple, optional keys should be hidden
Every key has a set of properties that describes its
importance (mandatory, active, inconsistent, etc.)

10 / 22



Freeconf GUI (full detail)

11 / 22



Freeconf GUI (simplified)

12 / 22



Freeconf Configuration Model

Straightforward to encode Freeconf model as a hierarchical configuration
model
Two types of nodes — configuration keys and configuration sections
Key internal state formed by eight Boolean variables
Section internal state formed by three Boolean and four integer counters
Propagation rules expressive enough to describe Freeconf’s dynamics

13 / 22



UPPAAL Model-Checker

Joint project of Upsalla and Aalborg University
Model-checker utility of real-time dynamic systems with Java GUI
Visual modeling and C-like programming
Support for integer and Boolean variables, arrays, and automata
templates
Automata can be synchronized by channels
Operates on a subset of Timed Computational Tree Logic (TCTL)
Custom query language

14 / 22



UPPAAL Graphical User Interface

15 / 22



Queries

E <> forall(i : id_s)manCounter [i] < 0

Query usually starts with a quantifier and a path modality
Array indexing is supported
UPPAAL can be set to produce counter-examples
Nested modalities are not supported

16 / 22



Freeconf model in UPPAAL

Key properties modeled as global arrays
Hierarchy nodes modeled as automata templates Node and Section

Hierarchy structure encoded as 2D arrays
Properties propagation modeled using channel synchronization and
global variables
Rule heads and bodies hard-wired as automata
Auxiliary data structures needed to enforce causality

17 / 22



Section Automaton

18 / 22



Tested Instances

Freeconf model can be arbitrarily large
Only a small subset of models tested
Deficiencies in Freeconf revealed by the verification

(a) (b) (c)

19 / 22



Results

Model Time (s) Memory (KiB) # of states
a 0.07 6889 16384
b 1.67 24572 21233664
c 189.1 2147932 17592186044416

Configuration hierarchical model defined
Freeconf configuration dynamics encoded into the hierarchical model
Freeconf model encoded into UPPAAL
Several Freeconf instances verified by UPPAAL on Intel Core 2 Quad
Q9550 CPU at 2.83 GHz, 4 GiB RAM, running 64 bit Linux 3.1.10

20 / 22



Conclusion

UPPAAL easy to use but too general
Substantial amount of auxiliary code necessary, re-verification
problematic
Custom domain-specific model-checker needed in the future
Attempts to design the model-checker in Constraint Handling
Rules (CHR)
All propagation rules should be held at one place
Re-verification should be easy

21 / 22



Thank you for your attention!


	Introduction
	Configuration Hierarchical Model
	Freeconf
	UPPAAL
	Configuration Model Checking
	Results & Conclusion

