
Toward automatically learned search heuristics for 
CSP-encoded configuration problems 

Results from an initial experimental analysis

Dietmar Jannach
TU Dortmund, Germany

dietmar.jannach@tu-dortmund.de
1

Efficiently completing partial configurations



 Not all configurations are created equal

 Looking for an E-series Mercedes?

Background

2



 19,219 used cars online
 Customer requirement: "E-Series"

Common combinations

3



 16,233 (~84%) with automatic transmission
 Customer requirement: "E-Series", "automatic transmission"

Common combinations

4



 Configuration problem solving can be hard
 Configurations can comprise thousands of parameter settings
 Despite the use of high-performance solvers, domain-specific heuristics 

might be required for efficient problem solving

 Observations: 
 Some configurations are much more likely (popular) than others
 The majority of customers might have very similar requirements

 See yesterday's talk on customer demanded variety

 Therefore:
 It might be good to explore the "popular" part of the search space first
 Where to search first, can be learned from past configurations

Main hypothesis & approach

5



 Constraint Satisfaction
 Long tradition of modeling configuration problems as Constraint 

Satisfaction Problems
 Basic form, given

 V – set of variables with defined domains (D)
 C – a set of constraints on legal, simultaneous value assignments

 Find:
 An assignment of a value to each variable in V such that all constraints 

from C are satisfied

 Advanced CSP models
 Partially based on requirements from the configuration domain

 Dynamic CSPs – some variables are only relevant in certain situations
 Generative CSPs – variables can be added dynamically to the problem

A CSP-based approach

6



 Goal
 Demonstrate the general plausibility and feasibility of a 

learning-based approach
 What has been done?
 A simulation-based experiment using CSP benchmark 

problems
 Compare problem solving time for different search (branching) 

heuristics
 A) Default strategy of the solver
 B) A learning-based strategy that uses statistics about previous 

successful configurations
 Idea: If the user chose an E-Series model, try the option "automatic 

transmission" before the "manual" transmission. (even simpler, in fact)

In this work

7



1. Find a set of suitable CSP benchmark problems
 Used CSP problems from the CP'08 solver competition
 Both standard problems (N-Queens) and a true configuration 

problem (Renault)
 Problems should be easily solvable (below 1 sec)

2. Simulate configuration problem instances for learning
 Determine some variables to be input variables
 e.g., 5 variables with domain size 10 (leading to 1000 possible inputs)

 Search for valid solutions given some random or biased inputs
 Record the solutions using the default strategy

3. Learn a good strategy (a trivial one in our case)
4. Re-solve the same problems using the learned strategy
5. Compare the running times

Protocol details

8



 Simple learning strategy applied as proof-of-concept
 When "trying out" different value assignments, try the one that 

was part of the most solutions so far
 Not depending on inputs
 Not depending on other variable assignments

 More advanced strategies are of course possible
 Make choice dependent on other assignments so far
 Learn more complex rules, 
 e.g., based on Association Rule Mining

 Perform a static analysis, induce additional "constraints"

Statistics-based search space exploration

9



 A basic CSP search strategy
 V={V1,V2,V3}, C={V2<V1, V2<V3}
 Domains = {1,2,3}

Technically – Adapt the branching strategy

10

V1 Possible: {1,2,3}

V2

Try: V1=1

Possible: {} - Backtrack V2 Possible: {1}

Try: V1=2

V3

Try: V2=1

Possible: {2,3}

Assign: V3=2, all assigned

 Standard 
backtracking

 Constraint 
propagation 
omitted here



 Two decision points:
 Which variable to try next?

 e.g., based on Fail-First principle (minimum domain)

 Which value to try first?
 e.g., based on the order (increasing domain)

 Choice strategy depends on problem structure
 Solving a standard benchmark with Choco (Java-based solver)

 Default strategy: 1 minute (!)
 Impact-based branching: 800ms
 Increasing domain: 500ms
 Decreasing domain: 30ms

Choice points – Variables and Values

11



 Implementation of a trivial "ValueSelection" class
 Extension mechanism of Java-based constraint solver Choco 

used
 Strategy is based on a static ordering of values for each 

variable determined in the learning phase
 If no ordering exists or some values were never part of a solution, use 

a typical default strategy (Increasing Domain)

Statistics-based branching

12



 For each benchmark problem …
 Statistics collection phase
 Randomly determine "input" variables

For (i = 1 to 300)
Create random inputs using Gaussian distribution

as not all inputs are equally frequent
Search for a solution
IF solution exists 

increase the "successful value" counters for the variables   
remember the required solution time

IF (i = 30 or i = 50 or … i = 300)
save a snapshot of the statistics so far

 Results: 
 Average running times with default strategy (300 runs)
 Statistics of the form V1 = [4,2,3,5,1],  V2 = [3,2,4,1,5]

More protocol details 

13



 Measuring the effects (for each benchmark problem)
 For each snapshot (30, 50, 100, 150, 200, 300)

For (i = 1 to 300)
Create random input values for the input variables used in the collection 
phase; do not use exact same inputs (solution caching)
Search for a solution
If solution exists

record the required running times

 Results
 Required running times for different learning levels

More protocol details 

14



 Strongest effect on real configuration problem
 111 variables, average domain size = 5, 6 input variables, > 15.000 poss. input comb.
 up to 82% decrease in search times

 Good effect also on other problems
 Running times can slightly increase again when more data exist

 No statistical significance tests made so far

 Results get worse when problem structure is symmetric
 Magic squares (e.g., assign each number from 1 to 9 on a 3-by-3 field)
 Also experimented with using uniform distribution

Measurements (CPU time):  initial results

15



 Already trivial strategies can lead to significant reductions 
in search time

 Assumption is a non-uniform distribution of customer requirements / 
configurations

 Achievable improvements depend on the problem structure

 Looking at standard deviations (Renault problem)
 Default strategy: 220ms, Statistics-based strategy: around 110ms
 Standard deviation also gets lower
 But is larger when compared to overall running times

 Interpretation
 Statistics-based search in many cases very fast
 But there are more cases where the solver is guided to wrong area of 

search space

Observations

16



 Not many papers found
 Pointers to corresponding literature welcome

 "Online learning" approaches
 Try to adapt the strategy during one search process

 e.g., determining the likelihood of the existence of at least one 
solution in the search graph to be explored
 based on static analysis and simplification of the graph

 In Answer Set Programming
 Learning a "policy" based on past solution runs

 On other domains
 Instruction scheduling on modern processors

Previous works

17



 In product configuration,
 problems are solved many times
 solutions are not uniformly distributed in the search space

 Our proposal
 Learn from past solver runs to find solutions more quickly

 Experiments
 Conducted experiments with benchmark problems and a 

trivial value selection strategy
 Results indicate the general feasibility

 Future work
 Use more advanced strategies
 However: consider cost of strategy application at run time

Summary & Future works

18



 Upcoming Dagstuhl seminar on unifying Software and 
Product configuration
 To take place in April 2014
 Commonalities and differences

 Feature models vs. configuration models, expressivity, reasoning, re-
inventing the wheel

 http://www.dagstuhl.de/14172

 See also 
 Arnaud Hubaux, Dietmar Jannach, Conrad Drescher, Leonardo Murta, Tomi

Mannistö Krzysztof Czarnecki, Patrick Heymans, Tien Nguyen and Markus 
Zanker. Unifying Software and Product Configuration: A Research 
Roadmap. Configuration Workshop 2012

Announcement

19



Thank you for your attention!
Questions?

20


