
Toward automatically learned search heuristics for
CSP-encoded configuration problems

Results from an initial experimental analysis

Dietmar Jannach
TU Dortmund, Germany

dietmar.jannach@tu-dortmund.de
1

Efficiently completing partial configurations

 Not all configurations are created equal

 Looking for an E-series Mercedes?

Background

2

 19,219 used cars online
 Customer requirement: "E-Series"

Common combinations

3

 16,233 (~84%) with automatic transmission
 Customer requirement: "E-Series", "automatic transmission"

Common combinations

4

 Configuration problem solving can be hard
 Configurations can comprise thousands of parameter settings
 Despite the use of high-performance solvers, domain-specific heuristics

might be required for efficient problem solving

 Observations:
 Some configurations are much more likely (popular) than others
 The majority of customers might have very similar requirements

 See yesterday's talk on customer demanded variety

 Therefore:
 It might be good to explore the "popular" part of the search space first
 Where to search first, can be learned from past configurations

Main hypothesis & approach

5

 Constraint Satisfaction
 Long tradition of modeling configuration problems as Constraint

Satisfaction Problems
 Basic form, given

 V – set of variables with defined domains (D)
 C – a set of constraints on legal, simultaneous value assignments

 Find:
 An assignment of a value to each variable in V such that all constraints

from C are satisfied

 Advanced CSP models
 Partially based on requirements from the configuration domain

 Dynamic CSPs – some variables are only relevant in certain situations
 Generative CSPs – variables can be added dynamically to the problem

A CSP-based approach

6

 Goal
 Demonstrate the general plausibility and feasibility of a

learning-based approach
 What has been done?
 A simulation-based experiment using CSP benchmark

problems
 Compare problem solving time for different search (branching)

heuristics
 A) Default strategy of the solver
 B) A learning-based strategy that uses statistics about previous

successful configurations
 Idea: If the user chose an E-Series model, try the option "automatic

transmission" before the "manual" transmission. (even simpler, in fact)

In this work

7

1. Find a set of suitable CSP benchmark problems
 Used CSP problems from the CP'08 solver competition
 Both standard problems (N-Queens) and a true configuration

problem (Renault)
 Problems should be easily solvable (below 1 sec)

2. Simulate configuration problem instances for learning
 Determine some variables to be input variables
 e.g., 5 variables with domain size 10 (leading to 1000 possible inputs)

 Search for valid solutions given some random or biased inputs
 Record the solutions using the default strategy

3. Learn a good strategy (a trivial one in our case)
4. Re-solve the same problems using the learned strategy
5. Compare the running times

Protocol details

8

 Simple learning strategy applied as proof-of-concept
 When "trying out" different value assignments, try the one that

was part of the most solutions so far
 Not depending on inputs
 Not depending on other variable assignments

 More advanced strategies are of course possible
 Make choice dependent on other assignments so far
 Learn more complex rules,
 e.g., based on Association Rule Mining

 Perform a static analysis, induce additional "constraints"

Statistics-based search space exploration

9

 A basic CSP search strategy
 V={V1,V2,V3}, C={V2<V1, V2<V3}
 Domains = {1,2,3}

Technically – Adapt the branching strategy

10

V1 Possible: {1,2,3}

V2

Try: V1=1

Possible: {} - Backtrack V2 Possible: {1}

Try: V1=2

V3

Try: V2=1

Possible: {2,3}

Assign: V3=2, all assigned

 Standard
backtracking

 Constraint
propagation
omitted here

 Two decision points:
 Which variable to try next?

 e.g., based on Fail-First principle (minimum domain)

 Which value to try first?
 e.g., based on the order (increasing domain)

 Choice strategy depends on problem structure
 Solving a standard benchmark with Choco (Java-based solver)

 Default strategy: 1 minute (!)
 Impact-based branching: 800ms
 Increasing domain: 500ms
 Decreasing domain: 30ms

Choice points – Variables and Values

11

 Implementation of a trivial "ValueSelection" class
 Extension mechanism of Java-based constraint solver Choco

used
 Strategy is based on a static ordering of values for each

variable determined in the learning phase
 If no ordering exists or some values were never part of a solution, use

a typical default strategy (Increasing Domain)

Statistics-based branching

12

 For each benchmark problem …
 Statistics collection phase
 Randomly determine "input" variables

For (i = 1 to 300)
Create random inputs using Gaussian distribution

as not all inputs are equally frequent
Search for a solution
IF solution exists

increase the "successful value" counters for the variables
remember the required solution time

IF (i = 30 or i = 50 or … i = 300)
save a snapshot of the statistics so far

 Results:
 Average running times with default strategy (300 runs)
 Statistics of the form V1 = [4,2,3,5,1], V2 = [3,2,4,1,5]

More protocol details

13

 Measuring the effects (for each benchmark problem)
 For each snapshot (30, 50, 100, 150, 200, 300)

For (i = 1 to 300)
Create random input values for the input variables used in the collection
phase; do not use exact same inputs (solution caching)
Search for a solution
If solution exists

record the required running times

 Results
 Required running times for different learning levels

More protocol details

14

 Strongest effect on real configuration problem
 111 variables, average domain size = 5, 6 input variables, > 15.000 poss. input comb.
 up to 82% decrease in search times

 Good effect also on other problems
 Running times can slightly increase again when more data exist

 No statistical significance tests made so far

 Results get worse when problem structure is symmetric
 Magic squares (e.g., assign each number from 1 to 9 on a 3-by-3 field)
 Also experimented with using uniform distribution

Measurements (CPU time): initial results

15

 Already trivial strategies can lead to significant reductions
in search time

 Assumption is a non-uniform distribution of customer requirements /
configurations

 Achievable improvements depend on the problem structure

 Looking at standard deviations (Renault problem)
 Default strategy: 220ms, Statistics-based strategy: around 110ms
 Standard deviation also gets lower
 But is larger when compared to overall running times

 Interpretation
 Statistics-based search in many cases very fast
 But there are more cases where the solver is guided to wrong area of

search space

Observations

16

 Not many papers found
 Pointers to corresponding literature welcome

 "Online learning" approaches
 Try to adapt the strategy during one search process

 e.g., determining the likelihood of the existence of at least one
solution in the search graph to be explored
 based on static analysis and simplification of the graph

 In Answer Set Programming
 Learning a "policy" based on past solution runs

 On other domains
 Instruction scheduling on modern processors

Previous works

17

 In product configuration,
 problems are solved many times
 solutions are not uniformly distributed in the search space

 Our proposal
 Learn from past solver runs to find solutions more quickly

 Experiments
 Conducted experiments with benchmark problems and a

trivial value selection strategy
 Results indicate the general feasibility

 Future work
 Use more advanced strategies
 However: consider cost of strategy application at run time

Summary & Future works

18

 Upcoming Dagstuhl seminar on unifying Software and
Product configuration
 To take place in April 2014
 Commonalities and differences

 Feature models vs. configuration models, expressivity, reasoning, re-
inventing the wheel

 http://www.dagstuhl.de/14172

 See also
 Arnaud Hubaux, Dietmar Jannach, Conrad Drescher, Leonardo Murta, Tomi

Mannistö Krzysztof Czarnecki, Patrick Heymans, Tien Nguyen and Markus
Zanker. Unifying Software and Product Configuration: A Research
Roadmap. Configuration Workshop 2012

Announcement

19

Thank you for your attention!
Questions?

20

