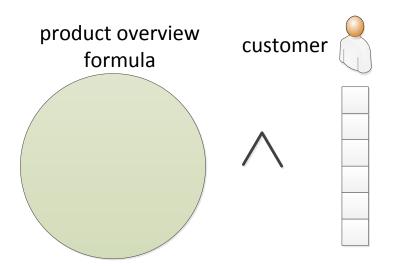
Applications of MaxSAT in Automotive Configuration

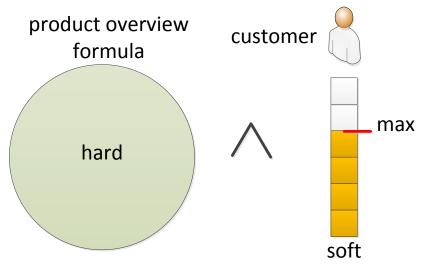
Rouven Walter Christoph Zengler Wolfgang Küchlin

> Symbolic Computation Group WSI Informatics University of Tübingen, Germany

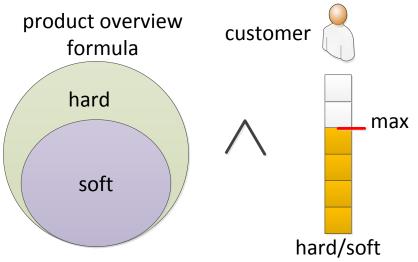
Configuration Workshop 2013 August 29–30, Vienna Austria


Overview

- Motivation
- Applications in Automotive Configuration
- Experimental Results


Overview

- Motivation
- Applications in Automotive Configuration
- Experimental Results


Motivation

Motivation (cont'd)

Motivation (cont'd)

Overview

- Motivation
- Applications in Automotive Configuration
- Experimental Results

Applications in Automotive Configuration

Definition (SAT-Problem)

Let $\varphi = \bigwedge_{i=1}^m \psi_i$ a formula in CNF.

• Question: Does an assignment ν exist with $\|\varphi\|_{\nu} = 1$?

8 / 23

Applications in Automotive Configuration

Definition (SAT-Problem)

Let $\varphi = \bigwedge_{i=1}^m \psi_i$ a formula in CNF.

• Question: Does an assignment ν exist with $\|\varphi\|_{\nu} = 1$?

Definition (MaxSAT)

$$\operatorname{MaxSAT}(\varphi) := \operatorname{max} \left\{ \sum_{j=1}^{m} \|\psi_{i}\|_{v} \mid v \in \{0,1\}^{n} \right\}$$

Applications in Automotive Configuration

Definition (SAT-Problem)

Let $\varphi = \bigwedge_{i=1}^m \psi_i$ a formula in CNF.

• Question: Does an assignment ν exist with $\|\varphi\|_{\nu} = 1$?

Definition (MaxSAT)

$$\operatorname{MaxSAT}(\varphi) := \operatorname{max} \left\{ \sum_{j=1}^{m} \|\psi_{i}\|_{v} \mid v \in \{0,1\}^{n} \right\}$$

Question (MaxSAT): How many clauses can be maximally satisfied?

Automotive Configuration with SAT

Product overview formula (POF):

- Each component c is represented by a variable x_c
- Families of components: φ_{cc}
- Dependencies between components: φ_{dep}
- Resulting formula:

$$\varphi_{car} := \varphi_{cc} \wedge \varphi_{dep}$$

Automotive Configuration with SAT

Product overview formula (POF):

- Each component c is represented by a variable x_c
- Families of components: φ_{cc}
- Dependencies between components: φ_{dep}
- Resulting formula:

$$\varphi_{\operatorname{car}} := \varphi_{\operatorname{cc}} \wedge \varphi_{\operatorname{dep}}$$

Possible Verifications:

- Validation of a partial configuration
- Test for forced components
- Test for redundant components

Drawbacks with the SAT-based approach In case of an invalid configuration...

Drawbacks with the SAT-based approach

In case of an invalid configuration...

• Which components cause the conflict?

Drawbacks with the SAT-based approach

In case of an invalid configuration...

- Which components cause the conflict?
- Which components to omit to get a valid configuration with a maximal number of chosen components?

Automotive Configuration with MaxSAT – idea

Reconsider resulting formula from SAT-based configuration:

$$\varphi_{\operatorname{car}} := \varphi_{\operatorname{cc}} \wedge \varphi_{\operatorname{dep}}$$

Automotive Configuration with MaxSAT - idea

Reconsider resulting formula from SAT-based configuration:

$$\varphi_{\mathsf{car}} := \varphi_{\mathsf{cc}} \wedge \varphi_{\mathsf{dep}}$$

Set φ_{cc} clauses as hard clauses

Automotive Configuration with MaxSAT – idea

Reconsider resulting formula from SAT-based configuration:

$$\varphi_{\operatorname{car}} := \varphi_{\operatorname{cc}} \wedge \varphi_{\operatorname{dep}}$$

- Set φ_{cc} clauses as hard clauses
- Set φ_{dep} clauses as hard clauses

Automotive Configuration with MaxSAT – idea

Reconsider resulting formula from SAT-based configuration:

$$\varphi_{\operatorname{car}} := \varphi_{\operatorname{cc}} \wedge \varphi_{\operatorname{dep}}$$

- Set φ_{cc} clauses as hard clauses
- Set φ_{dep} clauses as hard clauses
- Set certain clauses from the sales division as soft clauses (with weights)

Possible scenarios

1) Maximization of chosen components: Customer options x_{c_1}, \ldots, x_{c_n} .

$$\underbrace{\varphi_{\mathit{car}}}_{\mathsf{hard\ clauses}} \wedge \underbrace{X_{\mathit{C}_1} \wedge \ldots \wedge X_{\mathit{C}_n}}_{\mathsf{soft\ clauses}}$$

Possible scenarios

1) Maximization of chosen components: Customer options x_0, \ldots, x_n

$$\underbrace{\varphi_{\mathit{car}}}_{\text{hard clauses}} \wedge \underbrace{X_{\mathit{C}_1} \wedge \ldots \wedge X_{\mathit{C}_n}}_{\text{soft clauses}}$$

2) Maximization of priorities: Customer options x_{c_1}, \ldots, x_{c_n} with priorities p_1, \ldots, p_n .

$$\underbrace{\varphi_{car}}_{\text{hard clauses}} \wedge \underbrace{\left(x_{c_1}, p_1\right) \wedge \ldots \wedge \left(x_{c_n}, p_n\right)}_{\text{soft clauses}}$$

Possible scenarios

3) Minimization of costs: Options c_1, \ldots, c_n with prices p_1, \ldots, p_n .

$$\underbrace{\varphi_{\mathit{car}}}_{\text{hard clauses}} \wedge \underbrace{\left(\neg X_{\mathit{C}_1}, p_1\right) \wedge \ldots \wedge \left(\neg X_{\mathit{C}_n}, p_n\right)}_{\text{soft clauses}}$$

Use Partial Weighted MinUNSAT Solver!

Example

Table: Component families with limitations

family	alternatives	limit
<u> </u>	Г Г Г	
engine	E_1, E_2, E_3	= 1
gearbox	G_1, G_2, G_3	= 1
control unit	C_1, C_2, C_3, C_4, C_5	= 1
dashboard	D_1, D_2, D_3, D_4	= 1
navigation system	N_1, N_2, N_3	≤ 1
air conditioner	AC_1, AC_2, AC_3	≤ 1
alarm system	AS_1, AS_2	≤ 1
radio	R_1, R_2, R_3, R_4, R_5	≤ 1

Table: Component dependencies

premise	conclusion
G ₁	$E_1 \vee E_2$
$N_1 \vee N_2$	D_1
N_3	$D_2 \vee D_3$
$AC_1 \vee AC_3$	$D_1 \vee D_2$
AS_1	$D_2 \vee D_3$
$R_1 \vee R_2 \vee R_5$	$D_1 \vee D_4$

Example (cont'd)

Table: Customer choices and Partial MaxSAT results

family	choice	result
engine	<i>E</i> ₁	<i>E</i> ₁
gearbox	G_2	G_2
control unit	C_2	C_2
dashboard	D_3	D_1
navigation system	N ₂	N ₂
air conditioner	AC_1	AC_1
alarm system	AS_1	_
radio	R_2	R_2

Overview

- Motivation
- Applications in Automotive Configuration
- Experimental Results

Experimental Results

Algorithmic techniques

- Branch-and-Bound
- Basic SAT-based

Algorithm 1: Basic SAT-based approach

Input:
$$\varphi = \{\psi_1, \dots, \psi_m\}$$
Output: Minimal number of unsatisfied clauses $\varphi \leftarrow \{\psi_1 \lor b_1, \dots, \psi_m \lor b_m\}$
 $cost \leftarrow m$
while $SAT(\varphi \cup CNF(\sum_{i=1}^m b_i < cost))$ do
 $buildrel cost \leftarrow cost - 1$

return cost

Core-guided SAT-based

Table: Benchmark details

	Benchmark categories		
	Order	Packages	Packages & more
#instances	777	777	777
Avg. #variables	896	896	896
Avg. #hard clauses	4474	3928	3592
Avg. #soft clauses	15	561	897
#no optimum	0	688	0
#with optimum	777	89	777
Avg. optimum	2.127	1.348	4.067

Table: Benchmark results with a time limit of 3,600 sec. per instance

Avg. time (sec)	akmaxsat	Fu & Malik	PM2
Order	0.165	4.367	4.180
Packages	0.025	1.664	exceeded limit
Packages & more	0.535	5.387	exceeded limit

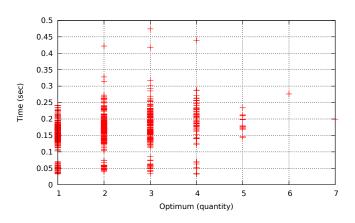


Figure: Benchmark 'Order' with akmaxsat

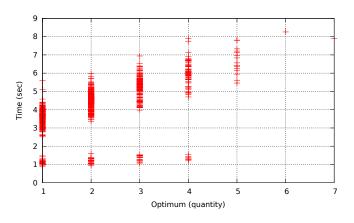


Figure: Benchmark 'Order' with Fu & Malik

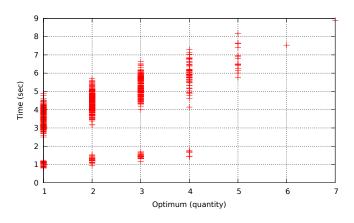


Figure: Benchmark 'Order' with PM2

Summary

- Motivation
- Applications in Automotive Configuration
 - MaxSAT-based approach
 - Possible scenarios
 - Application example
- Experimental Results
 - Algorithmic techniques
 - Benchmark details
 - Benchmark results

Summary

- Motivation
- Applications in Automotive Configuration
 - MaxSAT-based approach
 - Possible scenarios
 - Application example
- Experimental Results
 - Algorithmic techniques
 - Benchmark details
 - Benchmark results

Thank you for your attention