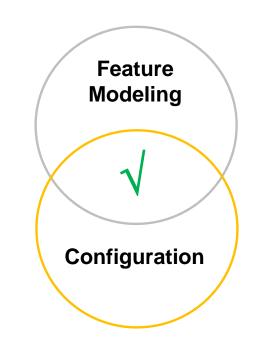


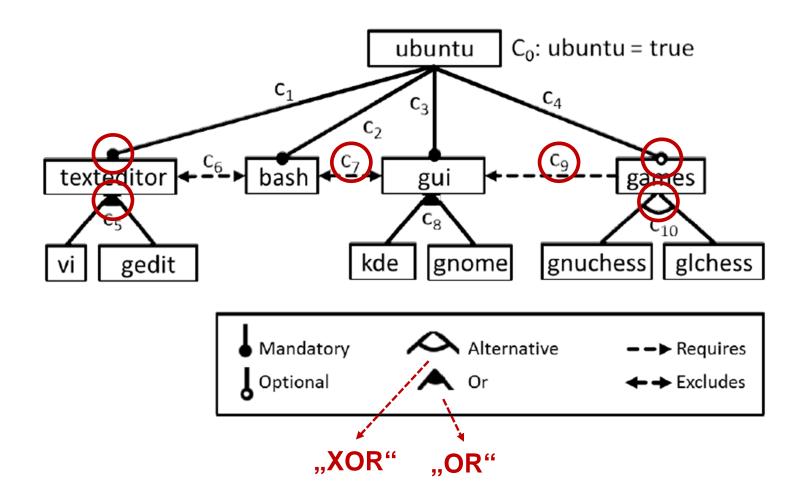
Workshop on Configuration

Vienna, Aug. 29th-30th, 2013

Towards Anomaly Explanation in Feature Models


<u>Alexander Felfernig</u>¹, David Benavides², José Galindo², and Florian Reinfrank¹

¹Graz University of Technology, Austria ²University of Seville, Spain



- Introduction
 - 1. Feature Models (FMs): Modeling Concepts
 - 2. FMs: Configuration Task Definition
 - 3. FMs: Analysis Operations
- Testing & Debugging
 - 4. Configuration Models: Testing & Debugging
 - 5. FM Analysis Operations as Test Cases
 - 6. FM Analysis Operations & Explanations
- Ongoing & Future Work

Feature Models (FMs): Modeling Concepts

FMs: Configuration Task Definition

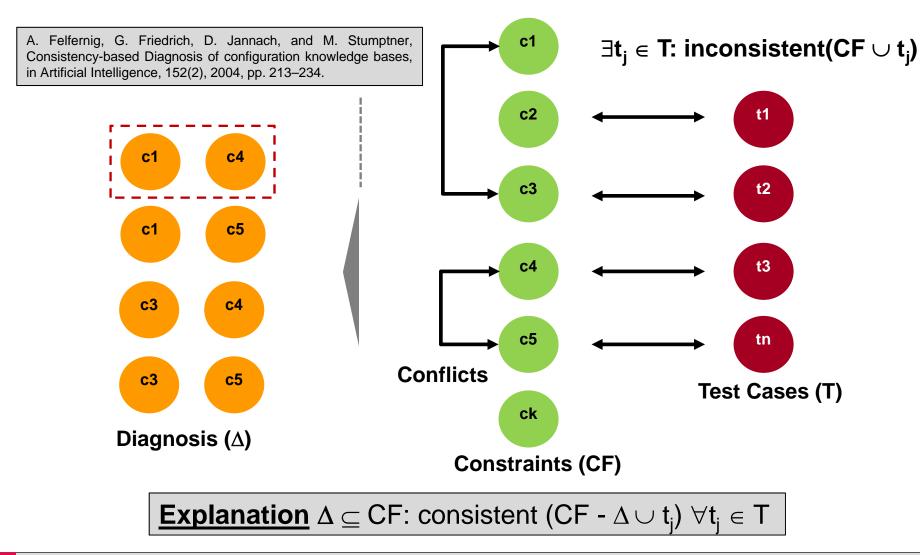
Definition 1 (FM Configuration Task). A feature model (FM) configuration task is defined by the triple (F.D.C) where $F = \{f_1, f_2, ..., f_n\}$ is a set of features $f_i, D = \{dom(f_1), dom(f_2), ..., dom(f_n)\} (dom(f_i) = \{true, false\})$ is the set of corresponding feature domains, and $C = CR \cup CF$ is a set of constraints restricting the possible configurations which can be derived from the feature model. In this context, $CR = \{c_1, c_2, ..., c_k\}$ represents a set of requirements (of a specific user) and $CF = \{c_{k+1}, c_{k+2}, ..., c_m\}$ a set of feature model constraints.

Configuration Task: Example

- $F = \{ubuntu, texteditor, bash, gui, games, gedit, vi, kde, gnome, gnuchess, glchess\}$
- $D = \{dom(ubuntu) = \{true, false\}, dom(text-editor) = \{true, false\}, dom(bash) = \{true, false\}, dom(gui) = \{true, false\}, dom(games) = \{true, false\}, dom(gedit) = \{true, false\}, dom(vi) = \{true, false\}, dom(kde) = \{true, false\}, dom(gnome) = \{true, false\}, dom(gnuchess) = \{true, false\}, dom(glochess) = \{true, false\}, dom(glochess) = \{true, false\}$

• $CR = \{c_0: ubuntu = true\}$

• $CF = \{ c_1 : ubuntu \leftrightarrow texteditor, c_2 : ubuntu \leftrightarrow bash, c_3: ubuntu \leftrightarrow gui, c_4: games \rightarrow ubuntu, c_5: texteditor \leftrightarrow gedit \lor vi, c_6: \neg texteditor \lor \neg bash, c_7: \neg bash \lor \neg gui, c_8: gui \leftrightarrow kde \lor gnome, c_9: games \rightarrow gui, c_{10}: (gnuchess \leftrightarrow \neg glchess \land games) \land (glchess \leftrightarrow \neg gnuchess \land games) \}$



FMs: Analysis Operations

Analysis operation	Property Check		
Void feature model	inconsistent(CF $\cup \{c_0\}$)?		
Dead (f_i)	inconsistent(CF \cup { c_0 } \cup { f_i =true})?		
Conditionally	consistent(CF \cup { c_0 } \cup { f_i =false}) and		
dead (f_i)	consistent(CF \cup { c_0 } \cup { f_i =true})?		
Full mandatory (f_i)	inconsistent(CF \cup { c_0 } \cup { f_i =false})?		
False optional (f_{opt})	inconsistent(CF \cup { c_0 } \cup		
	${f_{par}=\text{true} \land f_{opt}=\text{false}})?$		
Redundant (c_i)	inconsistent((CF \cup { c_0 } - { c_i }) $\cup \neg$ (CF $\cup c_0$))?		

Configuration Models: Testing & Debugging

Alexander Felfernig

FM Analysis Operations as Test Cases

Example analysis operation:

"Dead feature" $f_i \in F$?

inconsistent (CF \cup {f_i = true} \cup {c₀})

$$\label{eq:task} \begin{array}{l} \underline{\textbf{Test Case}} : t_j \in \mathsf{T} \\ t_j : f_i = true \end{array}$$

Explanation $\Delta \subseteq CF$: consistent (CF - $\Delta \cup \{f_i = true\}$)

FM Analysis Operations & Explanations

Analysis operation	Explanation (Diagnosis Task)
Void feature model	FASTDIAG(CF,CF \cup { c_0 })
Dead (f_i)	FASTDIAG(CF,CF $\cup \{c_0\} \cup \{f_i = \text{true}\})$
Conditionally	$CF \leftarrow CF \cup \{f_i = true\}$
dead (f_i)	
Full mandatory (f_i)	$FASTDIAG(CF, CF \cup \{c_0\} \cup \{f_i = false\})$
False optional (f_{opt})	FASTDIAG(CF, CF \cup { c_0 } \cup
	$\{f_{par} = true \land f_{opt} = false\}$)
Redundant (c_i)	$c_i \notin \text{FMCORE}(\text{CF} \cup \{c_0\})$

Explanations: Used Algorithms

• Preferred conflicts (minimal)

U. Junker. QuickXplain: Preferred explanations and relaxations for over-constrained problems. AAAI'04, pp. 167–172, 2004.

HSDAG with test cases

A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner, Consistency-based Diagnosis of configuration knowledge bases, in Artificial Intelligence, 152(2), 2004, pp. 213–234.

• Preferred diagnoses (minimal): FastDiag

A. Felfernig, M. Schubert, and C. Zehentner. An efficient diagnosis algorithm for inconsistent constraint sets. AIEDAM, 26(1):53–62, 2012.

• Redundant constraints: FMCore

Alexander Felfernig, D. Benavides, J. Galindo, F. Reinfrank. Towards Anomaly Explanation in Feature Models, Workshop on Configuration, pp. 117-124, Vienna, Austria, 2013.

Evaluation

Feature Model: Xerox		#Variables: 172		#Constraints:205			
# Diagnoses	Inconsistency Rate						
	2% (140 diagnoses)		5% (84 diagnoses)		7% (55 diagnoses)		
	FASTDIAG	HSDAG	FASTDIAG	HSDAG	FASTDIAG	HSDAG	
1	1638	3354	1260	2996	1740	3023	
2	2013	6646	1710	3167	2050	3203	
3	2262	12106	1970	9454	2330	9544	
4	2434	12355	2180	9536	2580	9654	
5	2637	28111	2341	12044	2790	12165	
10	3417	69950	2921	64631	3330	65240	
20	4758	75317	3911	90715	5010	91726	
all	46785	>100000	17301	>100000	10541	>100000	

R. Reiter. A theory of		
diagnosis from first principles.		
Artificial Intelligence,		
32(1):57–95, 1987.		

 $Inconsistency \ Rate = \frac{\# conflicts \ in \ FM}{\# constraints \ in \ FM}$

Ongoing & Future Work

- Further evaluation of algorithms (ongoing work with University of Seville)
- Additional analysis operations (e.g., taking into account multiplicity bounds)
- Improved prediction of the sources of faulty behavior (e.g., exploitation of eye tracking "confusion patterns")
- Algorithms for intra-constraint redundancies

Conclusions

- Approach to integrate contributions of "Feature Modeling" and "Configuration" communities
- Diagnosis & redundancy detection as a basis for the explanation of "well-formedness" violations
- Generation of test cases on the basis of feature model analysis operations
- No additional management overheads for the generated test cases
- Not a substitute for "conventional" KB testing!

Thank You!

Alexander Felfernig