
15th International Configuration Workshop

Proceedings of the 15th International Configuration Workshop

Edited by
Michel Aldanondo and Andreas Falkner

August 29-30, 2013
Vienna, Austria

Organized by
Toulouse University — Mines Albi — CGI, France

Siemens AG, Austria

2

ISBN: 979-10-91526-02-9

École des Mines d’Albi-Carmaux
Campus Jarlard
Route de Teillet
Albi 81013 Cedex 09
France

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

3

15th International Configuration Workshop

Chairs

Michel Aldanondo, Toulouse University – Mines Albi, France
Andreas Falkner, Siemens AG, Austria

Organizing Committee

Michel Aldanondo, Toulouse University – Mines Albi, France
Andreas Falkner, Siemens AG, Austria

Gerhard Friedrich, AAU Klagenfurt, Austria
Thorsten Krebs, Encoway GmbH Bremen, Germany

Program Committee

Claire Bagley, Oracle Corporation, USA
Conrad Drescher, University of Oxford, UK

Ingo Feinerer, TU Wien Austria
Alexander Felfernig, Technische Universität Graz, Austria

Cipriano Forza, Padova University, Italy
Albert Haag, SAP AG, Germany

Lothar Hotz, Universität Hamburg, Germany
Markus Stumptner, University of South Australia, Australia

Erich Teppan, AAU Klagenfurt, Austria
Juha Tiihonen, Aalto University, Finland

Arnaud Hubaux, University of Namur, Belgium
Élise Vareilles, Toulouse University – Mines Albi, France

Linda Zhang, IESEG business school Paris France

Special Thanks

Paul Gaborit, Toulouse University – Mines Albi, France

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

4

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

5

Contents

Foreword. 7

Toward automatically learned search heuristics for CSP-encoded configuration problems - results from an
initial experimental analysis
Dietmar Jannach. 9

Choice Navigation Assessment for Mass Customization
Kjeld Nielsen, Thomas Ditlev Brunoe, Simon Haahr Storbjerg. 13

Applications of MaxSAT in Automotive Configuration
Rouven Walter, Christoph Zengler, Wolfgang Küchlin . 21

Interactive Configuration of High Performance Renovation of Apartment Buildings by the use of CSP.
Élise Vareilles, Christian Thuesen, Marie Falcon, Michel Aldanondo . 29

Configuration Dynamics Verification Using UPPAAL
David Fabian, Radek Mařík . 35

Improving configuration and planning optimization: Towards a two tasks approach
Paul Pitiot, Michel Aldanondo, Élise Vareilles, Thierry Coudert, Paul Gaborit. 43

Recommender Systems for Configuration Knowledge Engineering
Alexander Felfernig, S. Reiterer, M. Stettinger, F. Reinfrank, M. Jeran, G. Ninaus . 51

Solving Object-oriented Configuration Scenarios with ASP
Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich . 55

Configuring Domain Knowledge for Natural Language Understanding
Matt Selway, Wolfgang Mayer, Markus Stumptner . 63

The effect of sales configurator capabilities on the value perceived by the customer through the customization
process
Elisa Perin, Alessio Trentin, Cipriano Forza . 71

Generation of predictive configurations for production planning
Tilak Raj Singh, Narayan Rangaraj. 79

Choice Navigation: Towards a Methodology for Performance Assessment
Simon Haahr Storbjerg, Kjeld Nielsen, Thomas Ditlev Brunoe. 87

What makes the Difference? Basic Characteristics of Configuration
Lothar Hotz . 95

(Re-)configuration of Communication Networks in the Context of M2M
Iulia Nica, Franz Wotawa . 101

New complex product introduction by means of product configuration
Martin Bonev, Manuel Korell, Lars Hvam . 109

Towards Anomaly Explanation in Feature Models
Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank . 117

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

6

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

7

Foreword

Workshop goals

Product configuration is the task of composing product models of complex systems from parameterizable
components in the mass-customization business model. This task demands for powerful knowledge-
representation formalisms and acquisition methods to capture the great variety and complexity of con-
figurable product models. Furthermore, efficient reasoning methods are required to provide intelligent
interactive behavior in configurator software, such as solution search, satisfaction of user preferences,
personalization, optimization, diagnosis, etc...

The main goal of the workshop is to promote high-quality research in all technical areas related to
configuration. The workshop is of interest for both researchers working in the various fields of applicable
AI technologies mentioned below as well as for industry representatives interested in the relationship
between configuration technology and the business problem behind configuration and mass customization.
It provides a forum for the exchange of ideas, evaluations and experiences especially in the use of AI
techniques within these application and research areas.

Workshop location and history

The Workshop on Configuration 2013 continues the series of successful workshops organized within
IJCAI, AAAI, and ECAI since 1999 (for more details, please consult http://en.wikipedia.org/wiki/
Knowledge-based_configuration). Beside researchers from a variety of different fields, past events also
attracted a significant number of industrial participants from major configurator vendors Tacton, SAP,
Oracle, Encoway, or IBM-ILOG, as well as from end-users Siemens, Renault, HP, or DaimlerChrysler. In
2013, the workshop is a stand-alone event for the first time and last one and a half days. It takes place in
Vienna, Austria at the conference center of Siemens AG Österreich.

The working notes of this workshop gather contributions dealing with various topics closely related with
configuration problem modeling and solving. The 16 papers demonstrate both the wide range of applicable
techniques and the diversity of the problems and issues that need to be studied and solved to construct
and adopt effective configurators.

Michel Aldanondo and Andreas Falkner
July 2013

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

http://en.wikipedia.org/wiki/Knowledge-based_configuration
http://en.wikipedia.org/wiki/Knowledge-based_configuration

8

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Toward automatically learned search heuristics for CSP-encoded configuration
problems – results from an initial experimental analysis

Dietmar Jannach
Department of Computer Science, TU Dortmund, Germany

dietmar.jannach@tu-dortmund.de

Abstract
Constraint Programming historically been one of
the most important approaches for compactly en-
coding and solving product configuration prob-
lems. Solving complex configuration problems
efficiently however often requires the usage of
domain-specific search heuristics, which have to be
explicitly modeled by domain experts and knowl-
edge engineers. Since this is a time-consuming
task, our long term research goal is to develop tech-
niques to automatically learn appropriate search
heuristics for a given configuration problem.
Compared to other types of Constraint Satisfaction
Problems (CSPs), practical configuration problems
have certain specific characteristics. First, often
only a few of the variables are used to specify the
problem (“inputs”); in addition, the specific user in-
puts and the corresponding final configurations are
not equally distributed in the solution space.
In this paper, we present results of an initial
simulation-based experimental analysis, in which
we aimed to evaluate if already simple statistics can
help to speed up the search process. The first results
indicate that already trivial branching statistics can
help to improve search efficiency.

1 Introduction
Encoding product configuration problems as Constraint Satis-
faction Problems (CSPs) [13] has a comparably long tradition
both in research and in industrial practice. Using CSPs and
Constraint Programming techniques has various advantages,
compared, e.g., to rule-based systems, as CSP encodings are
declarative in nature and thus often easier to maintain. Fur-
thermore, a number of extensions to the basic CSP encod-
ing scheme as well as specific solving techniques have been
proposed in the past, which are at least partially inspired by
the specific characteristics of product configuration problems,
see [1], [5], [7] or [11]. Today, there also exists a number effi-
cient free and commercial constraint solvers that can be used
to check configurations for consistency or to complete partial
configurations given some customer inputs.

However, some larger and complex configuration problems
can only be solved efficiently when domain-specific heuris-

tics are used that guide the search process. In [4], for ex-
ample, Fleischanderl et al. report of a configuration problem
in the context of telecommunication switches where the final
configuration can comprise thousands of interconnected com-
ponents. The so-called “Partner Units Problem” is another ex-
ample of a hard real-world configuration problem, for which
recently a heuristic algorithm was proposed which allows the
problem to be solved in an efficient way [12].

Such heuristics are however domain-specific or even
problem-specific and their identification, formalization and
evaluation usually is a time-consuming and manual process.
It would therefore be desirable to have domain-independent
techniques, which help us to automatically derive appropriate
heuristics for a given problem setting. In principle, differ-
ent approaches to achieve this goal are possible. First, one
could try to analytically examine the configuration problem
(or constraint network) and its solution space. Alternatively,
one could follow a learning-based approach by analyzing a
number of past solution searches in order to derive appropri-
ate search heuristics.

In our ongoing research, we will focus on the latter type of
systems. The long term goal of this research activity being to
develop a set of methods that use a learning-based approach
to derive search heuristics for configuration problems. We
decided to follow the path of a learning-based approach for
several reasons. First, in real-world applications, the configu-
ration reasoning process (e.g., to complete a partial configura-
tion) is initiated several times, so that more and more training
data will be naturally available over time and the heuristics
can thus be made self-adaptive. Furthermore, in many do-
mains, the actual configurations requested by customers are
not equally distributed in the solution space and there might
be configurations which are far more popular than others1.
When using a learning approach, such information, which
might only be available once the system is deployed, can be
integrated in the heuristics learning process.

In this paper, we report the results of an initial experi-
mental analysis, in which we implemented a basic value or-
dering heuristic for CSPs, which simply ranks the possible
variable values based on the number of times they were suc-

1In some complex configuration scenarios, every configuration
might be unique; still, some subassemblies are usually similar or
identical across different configurations.

Dietmar Jannach 9

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

cessfully chosen in previous configuration runs. Our evalu-
ation is based on a simulation, in which we artificially and
randomly generated inputs for a number of benchmark prob-
lems from a Constraint Solver competition. The correspond-
ing solutions were used as an input for the “training” phase
in which statistics were collected. The benchmark problems
were then solved again based on this statistics-based heuris-
tic. To compare the efficiency, the required running times
were measured. Our initial results show that significant re-
ductions for some types of problems can be achieved even
when a very simple learning strategy is applied.

Overall, we consider our work to be first evidence for the
general feasibility of such approaches in the configuration do-
main and as an initial step toward the development of more
advanced learning strategies. Our basic technique can further-
more be used as a baseline in further experiments. Finally we
propose an experimental evaluation protocol to evaluate the
effectiveness of such learning-based approaches.

2 Approach and Initial Results
In our analysis, we focus on standard CSPs which are repre-
sented by a tuple < V,D, C >, where V is a set of variables,
D a set of finite domain associated with these variables, and
C a set of constraints on the variables. A solution to a CSP
comprises an assignment of values to each problem variable
in V such that no constraint from C is violated, see, e.g., [13]
for a comprehensive discussion of CSPs.

2.1 The role of branching strategies
When systematic tree search is used as a problem solving
scheme for CSPs, the choice of the branching strategy, that
is, which variable to consider next and which values to try
first, can have a significant impact on the required search
time. Over the last decades, a number of different and often
domain- or problem-independent branching heuristics have
therefore been proposed to speed up the search process.

Consider the following example, which shall demonstrate
the impact of the branching strategy on the solution effi-
ciency. When searching for one solution for the classical “all-
interval series” problem2 of a given size without any problem
specific optimizations, the running times when using the pop-
ular Choco3 constraint solver with different built-in heuristics
range from 30ms to 1 minute. Interestingly, the best strategy
for this setting seems to be to pick variable values in decreas-
ing order (30ms), which is an order of magnitude faster than
the usual “increasing domain” strategy (500ms) or the dy-
namic “impact-based branching” [9] strategy (800ms). When
no specific strategy is explicitly defined, the search can take
up to one minute.

In many cases, the question of which heuristic to chose for
a certain problem setting cannot be easily decided analyti-
cally and requires an experimental analysis or can be explored
with a so-called portfolio solver. Such portfolio solvers,
which try out different solvers and corresponding solving

2The goal is to find permutations of a given list of numbers that
fulfills certain properties, see http://www.cs.st-andrews.
ac.uk/˜ianm/CSPLib/prob/prob007/refs.html

3http://www.emn.fr/z-info/choco-solver/

strategies based on a case base of past solution searches for
similar problem instances, have shown to be very successful
in CSP Solver competitions [8].
2.2 Proposed baseline and experimental setup
For our experiments, we extended the open source constraint
solver Choco and implemented a new CSP value ordering
strategy called MostFrequent, which picks the next value
to test in the search process simply based on the number of oc-
currences of this value in solutions in previous search runs4.
When considering, for example, a PC configurator, if “Intel
Core i5” was the most frequent choice in previous configu-
ration sessions, the solver would simply try to use this value
first when asked to complete a partial configuration. While
in reality the choice of the CPU of course depends on the
specific requirements of the current customer, our underlying
assumption is that not every possible configuration is equally
popular. Therefore, if the specific CPU type was compatible
with a larger number of popular and frequent configurations,
it might be helpful to try this particular value first (as long as
it is not already ruled out by other constraints specified in the
current session)5.

In order to evaluate this approach, we conducted exper-
iments in which we measured the running times when us-
ing different branching strategies for a number of benchmark
problems of the CPAI’08 solver competition6. As a baseline
in our comparison the typical built-in IncreasingDomain
default strategy was used. The chosen benchmark problems
used in our experiments, see Section 2.3, had to fulfill certain
properties. First, they of course had to be solvable. Further-
more, as we had to run a larger number of solution searches,
e.g. to factor out random factors, we picked problems for
which the solver could determine a solution (or report infea-
sibility) for a given set of random inputs relatively quickly,
i.e., in less than a second7. The experiment consisted of two
phases.

(A) Statistics collection phase. Depending on the size of
the problem, we randomly designated a small number of the
problem variables to be input variables. When the CSP for
example contained 50 variables with an average domain size
of 20, we, e.g., picked up to 5 variables as inputs, so that
we could make sure that several thousand input combinations
(and resulting configurations) are possible. Next, we created
random input values for these variables, started a solution
search and recorded the variable assignments, if a solution
was found. In order to simulate that some configurations are
more popular than others, we picked the input values using a
Gaussian distribution and repeated the process until 300 solu-
tions with the default branching heuristic were found. As we
are also interested how the number of training instances ef-
fects the statistics-based approach, we defined different mea-
surement points during the simulation run, in which we made

4Technically, we used Choco’s built-in extension mechanism and
implemented a new ValIterator class.

5Note that the general solution space for a given configuration
problem is not affected by the different heuristics.

6http://www.cril.univ-artois.fr/CPAI08/
7We furthermore excluded benchmark problems which could not

be imported by Choco’s current XML import program.

10 Dietmar Jannach

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Figure 1: Measurements for example problems. Running times are given in milliseconds.

a snapshot of the collected statistics so far. These snapshots
were taken after 30, 50, 100, 150, 200 and 300 solutions. As
a baseline for the required running times using the default
strategy, we calculated the average search time for the 300
solutions.

(B) Measuring the effects. After the training phase,
we repeated the experiment with random inputs 300 times.
This time we however used the statistics-based value se-
lection strategy and using the training data for each of the
snapshots to analyze the effect when different amounts of
training data was available. For cases when individual val-
ues never appeared in a previous solution, we used the
IncreasingDomain strategy as a fallback.

Note that we used the same set of input variables in that
phase as in the training phase, but did not use exactly the same
input values. Instead, we again generated them randomly.
Otherwise, a simple solution caching technique would have
obviously led to the best results.

Since the total time of finding a solution for many prob-
lems depends on the specific set of variables used as an in-
put set, we repeated the whole above-described procedure
for 5 times, each time with a different set of input vari-
ables. Each problem therefore had to be solved successfully
(300 + 300) ∗ 5 = 3000 times, which explains why we only
considered problems which could be solved efficiently.

2.3 Initial results
As a performance indicator, we used the average CPU time
needed for the solver to find a solution. We also col-
lected statistics about the standard deviation of the differ-
ent runs. Figure 1 shows the average running times for 300
runs using the default strategy and the running times for the
MostFrequent strategy at different training levels.

The first row shows the results of a benchmark car config-
uration problem from Renault, which in our view is therefore
the most relevant of all measurements. The problem has 111
variables and an average domain size of around 5. As inputs,
we used 6 variables, which leads to a range of 56 = 15, 625
input combinations. The number of possible configurations
is actually lower as not all input combinations correspond to
feasible product variants. In this case, about one third (about
5,000) of the randomly generated input combinations were
feasible.

Using the solver’s built-in default value selection heuristic,
the problem could on average be solved in 134.44 millisec-
onds. When using the statistics-based strategy, however, the
average running times could be reduced to 26.20ms, which is
a reduction of over 80%. Interestingly, this effect could be
achieved already after a very small number of training runs.
Later on, when more training data is available, the values
seem to slightly increase again. As we did not measure if
these differences are statistically different so far, the slight
increase could however be a random effect.

When using the default branching strategy, the standard de-
viation for all experiment runs for the Renault problem was
around 220ms. With the statistics-based strategy, this value
could be reduced to the half of that. However, when com-
pared to the absolute overall running times, the standard de-
viation is much higher for the statistics-based strategy. This
in general means that some problems can be very efficiently
solved with the statistics-based approach, while in some cases
the statistics-based strategy can also lead the solver to wrong
areas of the search space8. Overall, however, the average
number of required backtracks, which we measured but do
not report here for space reasons, could also be reduced to a
third using the statistics-based strategy.

The other problems of our analysis shown in Figure 1 have
different characteristics and are in particular not configura-
tion problems but other types of general constraint problems.
Problem 2 in Figure 1, for example, is an artificially created
one and has over 500 variables and 400 constraints. Also in
this case, a significant reduction of the running times could be
observed. Problems 4 and 5 are quite similar, but in the case
of problem 5 we used many more variables as inputs which
led to a drastically higher number of possible inputs while at
the same time the solution search was more constrained. As
a result, the improvements for Problem 5 were very small.
For Problem 7, no improvement was observable. Problems
8 and 9 are classical magic square problems with a highly
symmetric problem structure that does not correspond to the
typical characteristics of configuration problems. In particu-
lar for case 9, in which the inputs were chosen from an equal

8In all experiments we limited the allowed computation time to
avoid effects of extreme outliers. In the Renault example, the time
limit was set to 1,000ms. Situations in which the time frame was not
sufficient were however very rare.

Dietmar Jannach 11

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

distribution, nearly no improvement was achieved with the
statistics-based strategy, because every variable value has an
nearly equal probability to appear in a random solution. For
case 8, a slight improvement could be observed because the
inputs values were chosen using a Gaussian distribution.

3 Previous and future works
To the best of our knowledge, limited research has been done
so far on the automatic derivation of search heuristics in
the area of product configuration. There are, however, ap-
proaches in the area of general CSPs that include a learn-
ing component in the search process. In the context of our
work, we are particularly interested in approaches which aim
to learn from previous solution searches or similar problem
instances (in contrast to works which try to adapt the search
strategy within a single search, often referred to as “online
learning”, or based on multiple restarts).

In [3], for example, the authors propose an “advice gen-
eration” framework for value ordering in CSPs which is
based on estimating the likelihood of the existence of at least
one solution in the area of the search graph to be explored.
Such estimates can be obtained by analyzing a simplified and
backtrack-free version of the problem, where the hope is that
the number of solutions in the simplified version with less
constraints correlates with the solution count for the original
problem. Overall, while the general goal of their work is sim-
ilar to ours, the approach in [3] is not based on past solutions
but from an analysis of adapted problem instances, which can
also induce significant additional computational costs. In our
work, we assume that the solver can learn by collecting infor-
mation from previous search runs for different users.

In the area of Answer Set Programming, Balduccini in [2]
presents an approach for learning branching heuristics from
past solution instances. Similar to our work, the proposed
DORS framework aims to derive a problem-specific policy to
guide the solving procedure, i.e. which branch of the search
graph should be explored first. While there are differences
related to the actual search procedures, the general idea of [2]
corresponds to the work presented in this paper. Our future
work includes an analysis of how the more advanced but still
not very complex approach from [2] can be integrated in the
CSP solving process.

Finally, the idea of deriving heuristics from past observa-
tions in an automated way can be also found in other applica-
tion areas. In [10], for example, supervised machine learning
techniques are used to at least partially automate the construc-
tion of heuristics for the NP-complete problem of instruction
scheduling on modern processors. While the specific relation
to our work is limited, our future work includes the explo-
ration of techniques such as decision tree learning or classifi-
cation, see e.g., [6], for the generation of branching heuristics
for configuration problems.

4 Summary
Problem-specific search heuristics are a key element for the
practical success of many configurator applications. Since
the manual definition of such heuristics is time-consuming,
our research goal is to develop techniques that help us to

learn such heuristics automatically from previous solution
searches. In this paper, we have reported results of an initial
analysis of the general feasibility of such an approach based
on a simulation with small examples and a simple statistics-
based branching strategy. Our first results indicate that mea-
surable efficiency improvements can be achieved, when the
special characteristics of configuration problems are taken
into account.

References
[1] J. Amilhastre, H. Fargier, and P. Marquis. Consistency

restoration and explanations in dynamic CSPs appli-
cation to configuration. Artificial Intelligence, 135(1-
2):199–234, 2002.

[2] M. Balduccini. Learning and using domain-specific
heuristics in ASP solvers. AI Commun., 24(2):147–164,
2011.

[3] R. Dechter and J. Pearl. Network-based heuristics for
constraint-satisfaction problems. Artif. Intell., 34(1):1–
38, 1987.

[4] G. Fleischanderl, G. Friedrich, A. Haselböck,
H. Schreiner, and M. Stumptner. Configuring Large
Systems Using Generative Constraint Satisfaction.
IEEE Intelligent Systems, 13(4):59–68, 1998.

[5] A. Haselböck. Exploiting interchangeabilities in
constraint-satisfaction problems. In IJCAI’03, pages
282–289, Chambery, France, 1993.

[6] H. Ingimundardottir and T. P. Runarsson. Super-
vised learning linear priority dispatch rules for job-shop
scheduling. In Proc. LION 2011, pages 263–277, Rome,
Italy, 2011.

[7] D. Jannach and M. Zanker. Modeling and solving
distributed configuration problems: A CSP-based ap-
proach. IEEE TKDE, 25(3):603–618, 2013.

[8] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and
B. O’Sullivan. Using case-based reasoning in an algo-
rithm portfolio for constraint solving. In Proc. AICS
2008, 2008.

[9] P. Refalo. Impact-based search strategies for constraint
programming. In Proc. CP 2004, pages 557–571,
Toronto, Canada, 2004.

[10] T. Russell, A. M. Malik, M. Chase, and P. van
Beek. Learning heuristics for the superblock instruc-
tion scheduling problem. IEEE Trans. on Knowl. and
Data Eng., 21(10):1489–1502, 2009.

[11] T. Soininen, E. Gelle, and I. Niemelä. A fixpoint def-
inition of dynamic constraint satisfaction. In Proc.
CP’99, volume 1713, pages 419–433, Alexandria, Vir-
ginia, USA, 1999.

[12] E. Teppan, G. Friedrich, and A. A. Falkner. Quick-
Pup: A heuristic backtracking algorithm for the partner
units configuration problem. In Proc. AAAI/IAAI 2012,
Toronto, Canada, 2012.

[13] E. Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press, 1993.

12 Dietmar Jannach

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Abstract

In mass customization, the capability Choice
Navigation which is defined as the ability to
support customers in identifying their own
solutions while minimizing the burden of choice, is
essential to market high variety product portfolios
effectively. We argue that there is a need for
methods which can assess a company’s choice
navigation and their capability to develop it.
Through literature study and analysis of choice
navigation characteristics a number of metrics are
described which can be used for assessment. The
metrics are evaluated and analyzed to be applied as
KPI’s to help MC companies prioritize efforts in
business improvement.

1 Introduction

In any company it is essential to offer products which match
the needs and desires of customers in order to achieve sales
and profit. This is the case for mass producers as well as
mass customizers; however in mass customization this issue
is somewhat more complex than mass production due to a
much higher variety and a more complex product structure.
As pointed out by Salvador et al., mass customizers need
three fundamental capabilities to be successful (figure 1): 1)
Solution Space Development – Identifying the attributes
along which customer needs diverge, 2) Robust Process
Design – Reusing or recombining existing organizational
and value chain resources to fulfill a stream of differentiated
customer needs and 3) Choice Navigation – Supporting
customers in identifying their own solutions while
minimizing complexity and the burden of choice [Lyons et
al., 2012; Salvador et al., 2009].

In order for companies to be able to establish themselves
as mass customizers or for existing mass customizers to
improve performance, it is proposed that a set of methods
for assessing the three capabilities is developed. In this
paper, the focus is solely on the capabilities for Choice
Navigation. The research question for this paper is:

What metrics can be used to assess capabilities for choice
navigation and how can these be determined?

The research question is addressed by first defining
choice navigation, and in overall terms, which areas should
be assessed. Then a literature review is conducted to
identify existing metrics. These metrics are evaluated in
order to evaluate whetherthey are can be applied to assess
the choice navigation performance, and a final set of metrics
is developed including newly defined metrics.

2 Choice navigation

The capability choice navigation is defined by Salvador et
al. [Salvador et al., 2009] as “Support customers in
identifying their own solutions while minimizing
complexity and the burden of choice”. Hence this capability
is related primarily to the capabilities of the configuration
system, and its ability to configure a variety of products.

Salvador et al. proposes three different approaches to
develop the capabilities within choice navigation:
Assortment Matching, Fast-cycle, trial-and-error learning
and Embedded configuration. However these support the
development of choice navigation rather than the assessment
of choice navigation capabilities.

Choice Navigation Assessment for Mass Customization

Kjeld Nielsen
1
, Thomas Ditlev Brunoe

1
, Simon Hahr Storbjerg

2

1
Department of Mechanical and Manufacturing Engineering, Aalborg University, Denmark

2
Vestas Wind Systems A/S, Aarhus, Denmark

kni@m-tech.aau.dk

Choice
Navigation

Solution
Space

Devlopment

Robust
Process
Design

Figure 1 The three fundamental capabilities in mass

customization [Salvador et al., 2009]

Kjeld Nielsen, Thomas Ditlev Brunoe, Simon Haahr Storbjerg 13

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Two different perspectives are relevant when assessing a
company’s choice navigation capabilities. The first
perspective addresses the capabilities for supporting the
customer in choosing a product which matches the
customer’s needsfulling. The second perspective is
concerned with how well the choice navigation supports the
business process involved in product configuration. This
paper will focus on the assessment of choice navigation
purely from the customer’s perspective, thus focusing on the
capabilities supporting the customer in the configuration
process.

The ideal product configurator should after a customer
has finished a configuration leave the customer with the
experience that the process has not been unnecessarily
difficult to perform and the customer has been able to match
his or her needs exactly to a specific configuration of a
product [Salvador et al., 2009].

Supporting the customer in the configuration process,
thereby making the product configuration task easy and fast,
is a matter of aiding the customer in matching
characteristics of needs, empowering customers in building
models of needs or embedding the configuration in the
product itself [Salvador et al., 2009]. Measuring how well
choice navigation in a specific company ensures a 100% fit
between customer needs and the goods configured by the
customers is a somewhat difficult task.

The problem of assessing the fit between customer needs
and a configured product can be described using set theory.
Since the objective of choice navigation is to match the
customer demand with the offered solution space, a set is
defined for each of these as illustrated in figure 2. The
optimality of a solution space can then be described by
defining two sets of products: 1) the different products
offered by an MC company, defined as the set SS (Solution
Space) and 2) the variety of products which are demanded
by the customers, defined as the set CDV (Customer
demanded variety). As illustrated in figure 1, the
intersection of the two sets will represent the products
offered by the MC company which correspond to products
demanded by customers. The intersection of the two sets
thus represents the products that customers may buy, given

they are able to find and configure the products and willing
to pay the required sales price.

Intuitively, maximizing the set SS∩CDV would seem like
a good idea since this would maximize the potential number
of product variants that can be sold to customers. It would
also seem intuitive that the set SS \ CDV i.e. products which
are part of the offered variety but are not demanded by
customers should be minimized or even eliminated.

When describing these sets, it should be defined which
elements are in the set or in other words. What is an
element? One possibility would be that each element in the
sets corresponds to a unique product variant. Following this,
each possible combination of configuration choices would
correspond to a variant and thus an element in the set.
However, for most MC product families, the number of
elements becomes astronomical due to numerous
configuration variables each with a number of outcomes.
For example, when configuring a Mini Cooper online the
configuration choices presented to the customer will result
in a number of possible variants well above a 20 digit
figure. This is obviously significantly more than the
potential market of the Mini Cooper. Assuming that the sale
of Mini Coopers is a good representation of the demanded
variety, and the Mini Cooper has sold a few million cars and
assuming that each sold Mini Cooper is unique, the
customer demanded variety will only be a tiny fraction of
the offered variety and as a consequence. Furthermore we
would expect that assessing whether single variants would
counter a demand from a customer is simply not possible if
the number of variants is high. Thus it would seem that
variants defined as all possible combinations of
configuration variables is not an appropriate way to define
the solution space set as well as assessing the intersection of
SS and CDV.

A more simple and comprehensible way of representing
the sets may be defining the elements of the sets as the
“dimensions of customization”. If a product has a number of
customizable attributes and each attribute has a finite
number of values that can be chosen, each value will
correspond to a product property which can potentially be
demanded by a customer.

We thus propose that the solution space is described by
the number of customizable attribute’s values. For example
if a product can be configured in two different sizes and ten
different colors, the SS set will contain 12 elements; two
size elements and ten color elements. Defining the solution
space this way is trivial, since an MC company’s offerings
will usually be explicit in a configurator, product family
model or other documentation. Defining the set CDV on the
other hand is far more difficult since it will be impossible or
at least extremely time consuming to clarify all potential
customers’ demand for variety. Also this would depend on
the delimitation of the product family’s intended customer
base. As a result, measuring the size of CDV will
expectedly be practically impossible. The intersection of SS
and CDV however only describes which products match the
demand of customers, and not whether the customers
actually buy the products. Whether the customers buy the

Solution Space (SS)
Customer Demanded Variety

(CDV)

SS CDVSS ∩ CDV

Figure 2 The intersection of offered variety and customer

demanded variety yields the potential sellable products.

14 Kjeld Nielsen, Thomas Ditlev Brunoe, Simon Haahr Storbjerg

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

products is a matter of several other factors; however the
first obstacle is whether the customers are able to match the
needs with an actual product configuration, which is the
essence of choice navigation. For this reason, we introduce
another set, Customer Configuration (CC), which contains
the variety that is actually being configured by customers.

The Set CC intersects with both SS and CDV as shown in
figure 2, and intuitively the intersection of all three sets
SS∩CDV∩CC indicates the optimal situation, where the
solution space satisfies a customer demand and the customer
is able to configure the product. Conversely, all variety not
contained in SS∩CDV∩CC could indicate a problem.

Analyzing figure 3, intersections B and C are
consequences of a mismatch between the actual demand and
solution space, where B implies variety which is part of the
solution space but has no demand thus potentially implying
unnecessary complexity costs. C implies a demand for
variety that is not met by the current solution space and
which may indicate an intersection where the development
of the solution space could increase sales. The D
intersection is seemingly less interesting in terms of choice
navigation, since they relate primarily to the capabilities
within solution space development.

In intersection D the customer configures a product that
does not meet the demand nor is it contained in the solution
space. This is not a typical situation but is nevertheless
undesirable, and would likely be indicated by the customer
abandoning the configuration. In intersection E, there is a
match between the variety offered by the company and the
customer demand; however the customer does not configure
the product. This is likely a result of a user interface unable
to guide the customer satisfactory through the configuration
process. Intersection F indicates configuration which match
a customer demand, but is outside the actual solution space,
i.e. a product that can be configured but not produced,
which is also highly undesirable. Finally, in intersection G
the customer configures a product that is within the solution
space but does not meet the demand thus resulting in a
customer disappointment.

The description of the sets CC, CDV and SS above will
be used in the following as criteria for evaluating and
developing different metrics used for assessing choice
navigation capabilities, since metrics indicating variety
outside SS∩CDV∩CC will indicate sub optimality within
choice navigation.

When assessing a companys capabilities within choice
navigation it must be considered within which kind of
business environment the configuration will be done. There
is typically a great difference in choice navigation setups
depending on whether the sales process is done in a business
to business (B2B) or in a business to consumer (B2C) sales
process. Both setups can be assessed using the same choice
navigation metrics, however there are typically differences
in the sales setups, where in B2B it is often the sales
organization performing the actual configuration process,
whereas in B2C this is typically performed by the end
customers. Due to this difference, assessessment metrics for
choice navigation should be investigated for bias or
benchmarking issues when using the results across the
different business environments B2B and B2C. We will in
this paper not these differences further.

Choice Navigation metrics representing time and effort to
reach a configuration, should ideally be developed so that
all assessment results could be benchmarked against each
other. However regocnising differences between different
products and business setups, the metrics should at least
allow for benchmarking within a product type and business
environment.

One example where differences in product types could
make benchmarking between different products non
representative is where customers have a great interest in the
product and actually wish to spend long time on the
configuration process making it more than an experience
than a transaction. In this case, a metric indicating high
performance for shorter configuration processes might not
be representative for the goal the configurator is designed to
achieve. Hence, each metric should be scrutinized in
relation to assessing a specific product, as special
considerations might be relevant for special products.

3 Literature review

Blecker et al. identified and developed a number of metrics

for varity steering [Blecker et al., 2003]. Some these metrics

are relevant for assessment of choice navigation, and these

are identified in the following along with other relevant

metrics from literature.

Average configuration length of time metric (CT)

∑

source: [Blecker et al., 2003]

This metric measures how long time a customer or sales

person uses for performning the acutal configuration process

Configuration abortion rate metric (CA)

Solution
Space (SS)

Customer
Demanded

Variety (CDV)

Customer
Configuration (CC)

E

A F

G

D

B

C

Figure 3 Intersection of Solution Space, Customer

Demanded Variety and Customer Configuration

Kjeld Nielsen, Thomas Ditlev Brunoe, Simon Haahr Storbjerg 15

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

source: [Blecker et al., 2003]

The CA metric describes how frequently customers or

sales people choose to abort a configuraiton which has been

initiated due to whatever reason.

Customers Return Rate metric (RTR)

source: [Piller, 2002]

The RTR metric describes how often customers returns a

product to the company after receiving it due to e.g.

disappointment in the product.

Customers Churn Rate metric (CR)

source: [Sterne, 2003]

The CR metric describes the relationship between new

customers and lost customers.

Customers Repurchase Rate metric (RR)

source: [Piller, 2002]

The RR metric describes how often products are

repurchased, or how often customers return to byt another

different product.

Customers Complaints Rate metric (COR)

source: [Blecker et al., 2003]
Similar to the CR metric, the COR metric describes how

often customers complain over a product they have

purchased after receiving it.

Walcher and Piller conducted a survey of 500 different

mass customization companies, and for this purpose they

developed a number of metrics for comparing the different

mass customizers [Walcher & Piller, 2012]. The analysis

focused primarily on the configurators, i.e. choice

navigation but also on the products. Four objective metrics

were included:

 Visual features – To what extent the product is

visualized as it is configured, e.g. 2D picture,

multuple views, Zoom etc.

 Navigation help – Whether help like progress bars,

activity lists, option to save etc. is provided

 Company help – Whether help like

recommendations, deeper explanations, design

examples etc. is present

 Customer help – Whether users of the configurator

is able to get help or inspiration from other users

directly or indirectly.

The metrics were evaluated on a scale from 0-4

representing how many of the elements were found in each

configurator.

Furthermore, evaluators which were independent mass

customization experts were asked to evaluate each

configurator using the following subjective metrics:

 Visual realism

 Usability

 Creativity

 Enjoyment

 Uniqueness

 Choice options

Each metric consisted of a number of sub-metrics which

the evaluators were asked to assign a rating between 1 and

5. Each configurator was evaluated by 3 different experts

and an average was calculated for each metric for each

configurator.

4 Choice navigation metrics

In order to evaluate which metrics are usable for evaluating
choice navigation capabilities, the different set intersections
illustrated in figure 2 are addressed individually. For each
intersection, it is evaluated which metrics can support the
assessment.

Another requirement for the metrics is that they should be
measurable based on readily available data in a company’s
IT systems, i.e. ERP, CRM, PLM and configuration
systems, since this would allow mass customizers to utilize
these metrics for continous improvement.

Please note that intersections B and C are disregarded in
this context since they relate more to capabilities within
solution space development than choice navigation.

4.1 Intersection E

In this case, the customer will start to configure a product,
but never reach a final configuration which is purchased,
although the solution space supports the requirements. This
is difficult to distinguish from the case where requirements
cannot be met within the existing solution space
(intersection C), however high CA metric can be used as an
indication since customers that cannot configure a product
to meet their requirements will likely abandon the
configuration.

Furthermore, if configurations utilise only a small portion
of the solution space and if many configuration variables,
rarely deviate from the default values, that may indicate that
customers are not aware of all possible variety and have
therefore not been able to configure a suitable product
although it is in fact offered.

16 Kjeld Nielsen, Thomas Ditlev Brunoe, Simon Haahr Storbjerg

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

4.2 Intersection F

In this case, customers configure products which are within
the customer demanded variety but outside the solution
space, i.e. a product is configured which cannot be
delivered. This would likely result in the order being
cancelled by the company, since it cannot be manufactured.
Alternatively, the company will change the configuration to
fit within the solution space by e.g. upgrading the product.
As an indicator for these configurations we introduce two
new metrics:

Seller Order Cancellation rate (SOCR)

Seller Order change rate after purchase (SOCRAP)

High values of SOCR and SOCRAP would then indicate
configurations within intersection F.

Configurations within intersection F as well as D would
be a result of a faulty implementation of a configurator,
since a configurator should ideally reflect the company’s
solution space or a subset of the solution space. Reaching
configurations within intersection F and D is very
undesirable, since it will lead to loss of credibility as well as
a need for costly manual business processes to resolve the
issue.

4.3 Intersection G

In this case, the customer configures a product which is
within solution space but does not correspond to the
customer’s requirements. In this case several things could
happen. If the customer realises that the product is not
satisfactory prior to delivery, the customer may cancel the
order or change the configuration. To indicate this, two new
metrics are introduced:

Customer Order Cancellation rate (COCR)

Customer Order change rate after purchase (COCRAP)

In other cases, customers will not realise that the
configured product does not meet requirements, until it is
received. In this case the customer may return the product
(indicated by RTR) or complain (indicated by COR). Also
repurchase rates (RR) and churn rates (CR) would be
affected.

Hence configurations within intersection G would be
indicated by high values of COCR, COCRAP, RTR and
COR and CR and low values of RR.

4.4 Intersection D

In this intersection, the customer configures a product with
properties that the customer does not have a demand for and
is not part of the solution space. In this case either the
customer or the company can react to this and either cancel
or change the order. Hence configurations in intersection D
will be indicated by High values of SOCR, SOCRAP,
COCR and COCRAP. It may however be difficult to
determine whether high values of SOCR and SOCRAP are
due to configurations in intersection D or F. On the other
hand, the customer does not receive the product no matter
which are the configuration is in, so whether the customer
had a demand for the product may be less important.

4.5 Intersection A

Basically, sales within intersection A are the optimal
solution, since products are sold within the solution space
which also match the customers’ requirements. Hence if
there is little indication of configurations outside
intersection A, then that should indicate that configurations
are within intersection A. Since configurations within
intersection A should lead to a sale, then an increase in CSR
would also indicate an increase in configurations within
intersection A.

Configuration sales rate metric(CSR)

4.6 Further metrics

Apart from the metrics which relate directly to the

intersections A-G, we identified a number of metrics which

may be used to explain why configurations occur in

intersections outside intersection A. Hence the metrics can

be used to explain the possible reasons for a problem with a

configuration system rather than whether there is in fact a

problem.
Configuration click index metrics(CI)

∑

CI metric is a measure of the number of selections,

choices or clicks the customer makes in the configurator; or
in other words the effort needed by the customer for
performing the configuration. It could be the number of
selections or actions which the customer has made for a
number of given configurations indexed with the total
number of variables available in the configurator. The
metric cannot be used as benchmark in general or as
comparison to other companies/configurators but it can be
used internally as an indicator for how a change due to
implementation of new variables in the configurator or
change of configurator has impacted the choice navigation

Kjeld Nielsen, Thomas Ditlev Brunoe, Simon Haahr Storbjerg 17

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

performance. Increase of CI may indicate more complex
choice navigation or an increase in burden of choice
navigation. In a broad view it can be argued that a a value of
CI at or near one may indicate a perfect choice navigation.

Time used in configuration index metric(TI)

∑

As for CI the TI metrics gives an index of the time used

for a number of given configurations. As for CI the TI may

be used internally as an indication of change in burden of

choice caused by change of variables and/or change of

configurator.

Some of the metrics defined in MC500[Walcher & Piller,

2011] can also be utilized as metrics in this context.

However only the objective metrics are included here, and

thereby not the metrics that are based on a subjective

evaluation. The included metrics are:

 Visual features

 Navigation help

 Company help

 Customer help

All of these metrics are indicators of how customers are

guided or helped through the configuration process. Given a

company finds that many configurations are observed in

intersections E or G, then looking into these metrics may

explain the reasons for this.

5 Conclusion & Dicsussion

In order to support the development of choice navigation in
mass customization and thereby also product configuration,
metrics are needed in order to assess the choice navigation
performance. To establish these metrics, relevant literature
was reviewed and several applicable metrics were
identified. Further metrics were defined in areas where no
sufficient metrics could be identified in literature. The
following list compiles the metrics identified in literature
and newly defined metrics within choice navigation:

Metrics identified in the literature

 Configuration abortion rate metric (CA)

 Customers Return Rate metric (RTR)

 Customers Churn Rate metric (CR)

 Customers Repurchase Rate metric (RR)

 Customers Complaints Rate metric (COR)

Newly defined metrics

 Seller Order Cancellation rate (SOCR)

 Seller Order change rate after purchase

(SOCRAP)

 Customer Order Cancellation rate (COCR)

 Customer Order change rate after purchase

(COCRAP)

 Configuration sales rate metric(CSR)

It is the intention that these metrics can be used in MC
companies for different purposes. One purpose is
benchmarking against “best practice” mass customizers, in
order to identify areas with the greatest potential for
improvement. Another purpose is to use these metrics as
key performance indicators which are continually calculated
to monitor performance to continuously improve. In relation
to research in mass customization it is the intention to apply
these metrics in different types of mass customization
companies to analyze what distinguishes successful mass
customizers.

It is evident that the application of these metrics poses
certain requirements related to data availability and quality.
However, most MC companies already have systems in
place which are very likely to contain the data required for
calculating the metrics presented in this paper.

As mentioned in the introduction, choice navigation is
one of three fundamental capabilities for successful mass
customizers; the other two being robust process design and
solution space development. There are strong relations
between these three capabilities, and phenomena
experienced in a company cannot necessarily be attributed
to only one capability, and as such, the metrics defined in
this paper can also be influenced by other factors than the
solution space development capability.

One example is the metric configuration abortion rate
which we argue indicates how well choice navigation is
implemented. However, the configuration abortion rate will
be strongly influenced by the solution space, i.e. how well
the offered variety matches the demanded variety. The value
of this metric can thus both be influenced by a company’s
performance within choice navigation as well as solution
space development. In future research, metrics for the other
two capabilities, Robust Process Design and Solution Space
Development should be established and the links between
all three capabilities can be analyzed. Furthermore, the
relations between metrics performance and specific methods
should be addressed so that an assessment could point out
not only what a company should do to improve but also
how.

When performing an assessment and interpreting the
values of the metrics, the interpretation should take into
account the product type. Also when benchmarking,
different products cannot necessarily be compared directly.
The reason for this is that several metrics are based on the
customers actions, and these actions will depend on the
product type. For exampe if a customer buys a customized
car compared to a customized bag of muesli, then the
customer would probably be more likely to complain or
return the car if it has a wrong color compared to the muesli,
if a wrong ingredient has been added. In that case, the
difference would be due to the dfference in cost of the
products. Furthermore a metric like the repurchase rate
makes more sense for some product types than others. For
example, customers are likely to repurchase muesli more
often than cars. So this metric would depend on to what
extent a product can be characterised as a consumable or a

18 Kjeld Nielsen, Thomas Ditlev Brunoe, Simon Haahr Storbjerg

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

durable, and in case it is a durable, how long the life cycle
is.

With this paper we have ended a preliminary research of
assessment and measurement of the mass customization
process. We have with this paper finalized a general
approach describing how to assess and measure mass
customizatioin and developed a framework of potential
metrics useful for assessment and measurement of mass
customization, whether this is for the purpose of internal
performance indicators or it is used for benchmarking in
general. Next phase in this research will be test and
evaluation of the metrics.

References

[Blecker, T., et al. , 2003]. Key metrics system for variety
steering in mass customization. Munich Personal RePEc
Archive,

[Lyons, A. C., et al. , 2012]. Mass customisation: A strategy
for customer-centric enterprises. Customer-driven supply
chains (pp. 71-94)Springer.

[Piller, F. T. , 2002]. Logistische kennzahlen und
einflussgroessen zur performance-bewertung der mass-
customization-systeme von selve und adidas.

[Salvador, F., et al. , 2009]. Cracking the code of mass
customization. MIT Sloan Management Review, 50(3),
70-79.

[Sterne, J. , 2003]. Web metrics: Proven methods for
measuring web site successWiley.

[Walcher, D., & Piller, F. , 2012]. The customization 500: A
global benchmark study of online BtoC mass
customization (1st ed.)www.mc-500.com.

Kjeld Nielsen, Thomas Ditlev Brunoe, Simon Haahr Storbjerg 19

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

20 Kjeld Nielsen, Thomas Ditlev Brunoe, Simon Haahr Storbjerg

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Applications of MaxSAT in Automotive Configuration

Rouven Walter and Christoph Zengler and Wolfgang Küchlin∗

Abstract
We give an introduction to possible applications
of MaxSAT solvers in the area of automotive
(re-)configuration. Where a SAT solver merely
produces the answer “unsatisfiable” when given an
inconsistent set of constraints, a MaxSAT solver
computes the maximum subset which can be sat-
isfied. Hence, a MaxSAT solver can compute re-
pair suggestions, e.g. for non-constructible vehi-
cle orders or for inconsistent configuration con-
straints. We implemented different state-of-the-art
MaxSAT algorithms in a uniform setting within a
logic framework. We evaluate the different algo-
rithms on (re-)configuration benchmarks generated
from problem instances of the automotive industry
from our collaboration with German car manufac-
turer BMW.

1 Introduction
The well-known NP-complete SAT problem of proposi-
tional logic—is a given propositional formula satisfiable—
has many practical applications; see [Marques-Silva, 2008]
for an overview. Küchlin and Sinz [Küchlin and Sinz, 2000]
pioneered the application of SAT solving for the verification
of the configuration constraints and the bill-of-materials in
the product documentation of the automotive industry on the
example of Mercedes-Benz. A standard problem to be solved
there is the following: Given a (sub-)setO = {o1, . . . , on} of
equipment options and a set C = {c1, . . . , cm} of configura-
tion constraints whose variables are all options, is it possible
to configure a car with the options in O such that C is sat-
isfied? This gives us the SAT problem SAT(C ∪ O), where
the options form unit clauses. If the answer is true, then the
partial configuration O is valid and can be extended to a full
valid configuration F which satisfies C, and F can be readily
obtained from the SAT solver.

For the unsatisfiable case, two main questions arise: (1)
Which constraints (or clauses for a CNF formula C) of the
input formula caused the unsatisfiability? (2) How many (and
which) clauses can be maximally satisfied?

∗Symbolic Computation Group, WSI Informatics, Uni-
versität Tübingen, Germany, www-sr.informatik.
uni-tuebingen.de

The first question can be answered with proof tracing tech-
niques [Zhang and Malik, 2003; Ası́n et al., 2010]. Here a
CDCL SAT solver records a trace while solving the formula.
From this trace, a resolution based proof can be deduced,
which shows the clauses involved in the unsatisfiable core.
An unsatisfiable core is also called conflict.

The answer to the second question can be of important
practical use, too. For example, a customer may want to know
a maximal valid subset of an invalid O. Similarly, the car
manufacturer may want to know which maximal subset of C
is still satisfied by a currently invalid, but frequently desired
option set. This optimization problem can be answered with
MaxSAT, a generalization of the SAT problem (see Chapter
19 in [Biere et al., 2009]). Instead of deciding the satisfiabil-
ity of a propositional formula, MaxSAT computes the maxi-
mum number of satisfiable clauses in an unsatisfiable formula
in CNF. The Partial MaxSAT variant splits the clause set into
hard and soft clauses in a way that the number of satisfied
soft clauses is maximized while all the hard clauses have to
be satisfied. In the weighted variant of MaxSAT, clauses may
carry an additional weight, such as the price of an option o.

Some modern MaxSAT algorithms use SAT solvers as
sub-routines by reducing the problem to several SAT solver
calls [Fu and Malik, 2006; Marques-Silva and Planes, 2008;
Ansótegui et al., 2009]. With this approach, we can make
use of all modern techniques (such as clause learning, non-
chronological backtracking, or watched literals) of state-of-
the-art SAT solvers, which are not generally applicable to
MaxSAT solvers.

MaxSAT can be used to answer further questions of prac-
tical use. For example: (1) After choosing components with
priorities, what is the maximum sum of priorities that can be
achieved for a valid configuration? (2) When considering the
price of each component, how much is the minimal cost of a
valid configuration?

Reconfiguration is of high practical relevance in the au-
tomotive industry [Manhart, 2005]. The after-sales business
asks for extensions, replacements, or removal of components
of a valid configuration with minimal effort. For example,
when replacing the alarm system with a newer one, or when
moving a vehicle from the U.S. to Europe, we would like to
keep the maximal number of already installed components.
One approach for reconfiguration uses answer set program-
ming (ASP), which is a decidable fragment of first-order logic

Rouven Walter, Christoph Zengler, Wolfgang Küchlin 21

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

[Friedrich et al., 2011]. In this paper, we will describe a
MaxSAT based approach for reconfiguration.

This paper is organized as follows. Section 2 defines the
MaxSAT variants and notations. In Section 3 we give a short
introduction to automotive configuration based on SAT, fol-
lowed by a complete example. In Section 4 we describe
our approach to use MaxSAT for automotive configuration
to solve the above questions followed by detailed complete
examples. Section 6 shows experimental proof-of-concept re-
sults based on different modern MaxSAT solvers. Section 8
concludes the paper.

2 Preliminaries: SAT and MaxSAT variants
A Boolean assignment v is a mapping from a set of Boolean
variables X to {0, 1}. If a propositional formula ϕ evaluates
to true under an assignment v (denoted as v |= ϕ), we call v
a satisfying assignment or model for ϕ, otherwise an unsat-
isfying assignment. The SAT problem of propositional logic
is the question whether such a satisfying assignment v exists
for a given formula ϕ or not.

A literal is a variable or its negation. A clause is a disjunc-
tion of literals. Given a propositional formulaϕ =

∧m
i=1 ψi in

conjunctive normal form (CNF) over n variables, where ψi is
a clause for all 1 ≤ i ≤ m and m ∈ N≥0, the solution to the
Maximum Satisfiability problem (MaxSAT) is the maximal
number of clauses which can be satisfied by an assignment v.
Equation (1) shows a formal definition.

MaxSAT(ϕ) := max

m∑

j=1

‖ψi‖v
∣∣∣∣v ∈ {0, 1}n

 (1)

Where ‖ψi‖v = 1, if v |= ψi, otherwise ‖ψi‖ = 0.
We notice that for the corresponding MinUNSAT problem

whose solution is the minimum number of unsatisfied clauses,
equation (2) holds.

MaxSAT(ϕ) + MinUNSAT(ϕ) = m (2)

Equation (2) also holds for the same resulting model. As a
consequence, we only have to compute one problem to di-
rectly get the optimum and the corresponding model for both
problems.

There are two extensions of the MaxSAT problem,
called Weighted MaxSAT (WMaxSAT) and Partial MaxSAT
(PMaxSAT). As the name suggests, in a weighted MaxSAT
instance each clause ψi has a weight wi ∈ N≥0 (denoted
by the tuple (ψi, wi)). The Weighted MaxSAT problem then
asks for the maximal sum of weights of satisfied clauses. Fur-
thermore, in a partial MaxSAT instance, the clauses are di-
vided into disjoint hard and soft clauses sets: Hard ∪̇ Soft.
An optimal solution satisfies all hard clauses and a maximal
number of soft clauses. Both extensions can be combined to
Partial Weighted MaxSAT (PWMaxSAT).

The relationship of equation (2) also holds for each
MaxSAT variant.

3 Automotive Configuration with SAT
Automotive configuration can be represented as a constraint
satisfaction problem (c. f. [Astesana et al., 2010]) and also as

a CNF formula in propositional logic, where each satisfying
assignment is called a valid configuration of a car. The latter
approach was investigated in [Küchlin and Sinz, 2000].

We will give a simplified and short introduction into this
representation: (1) Each component (option) c is represented
by a separate variable xc; the component will be used in the
final configuration assignment v if and only if v(xc) = 1; (2)
components of a family (e.g. different steering wheels) will
be restricted by cardinality constraints [Sinz, 2005; Bailleux
et al., 2009] to choose exactly one (or at most one, if the
component is an optional feature); (3) dependencies between
components are expressed as clauses (e.g. the implication
(xa ∧ xb) → (xc ∨ xd) means “If components a and b are
chosen, then component c or d has to be chosen (or both)”; in
clause form (¬xa ∨ ¬xb ∨ xc ∨ xd)).

The resulting formula in CNF is:

ϕcar := ϕcc ∧ ϕdep (3)

Where ϕcc are the clauses of the families’ cardinality con-
straints and ϕdep are the clauses of the dependencies between
the components. With this representation, we can answer the
following questions using a SAT solver:

1. Validation of a partial configuration.
2. Forced component: A component, which is used in ev-

ery valid configuration.

3. Redundant component: A component, which can
never be used in any valid configuration.

3.1 Example: SAT based Configuration
We consider the families of components with their limitations
listed in Table 1.

Table 1: Component families with limitations

family alternatives limit
engine E1, E2, E3 = 1
gearbox G1, G2, G3 = 1
control unit C1, C2, C3, C4, C5 = 1
dashboard D1, D2, D3, D4 = 1
navigation system N1, N2, N3 ≤ 1
air conditioner AC1, AC2, AC3 ≤ 1
alarm system AS1, AS2 ≤ 1
radio R1, R2, R3, R4, R5 ≤ 1

Furthermore, we consider the dependencies between the
components listed in Table 2.

Table 2: Component dependencies

premise conclusion
G1 E1 ∨ E2

N1 ∨N2 D1

N3 D2 ∨D3

AC1 ∨AC3 D1 ∨D2

AS1 D2 ∨D3

R1 ∨R2 ∨R5 D1 ∨D4

22 Rouven Walter, Christoph Zengler, Wolfgang Küchlin

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

For example, the implication “G1 → E1 ∨ E2” means “If
gearbox G1 is chosen, then engine E1 or E2 has to be cho-
sen”.

With the resulting formula ϕcar from the above specifica-
tions, we consider two customer cases:

1. A customer chooses engine E1 and control unit C1 for
the car. But she does not want the air conditioner AC2.
We test Formula (4) for satisfiability.

ϕcar ∧ xG1
∧ xC1

∧ ¬xAC2
(4)

The result is true. Derived from the resulting model,
we can choose the components D1, C1, G1, E1 to get a
complete valid configuration assignment.

2. A customer chooses the componentsE1, G2, C2, D3 and
N2, AC1, AS1, R2. The result is false.
The question now is, which maximal subset of the orig-
inal choice will lead to a valid configuration?

3.2 Advantage of the MaxSAT based approach
With the SAT based configuration, two main problems arise.
First, if the configuration is not valid, it is not possible to
know which components cause the conflict. Second, even
if we know the components causing the conflict, we do not
know, which components to omit to get a valid configuration
with a maximal number of components we wanted originally.
The example 2 of Subsection 3.1 shows such a case.

As mentioned in the introduction, the first problem can be
handled with proof tracing to explain a conflict for an in-
valid configuration. The second problem can be handled with
MaxSAT and its extensions. We explain this approach in the
next section in detail.

4 Automotive Configuration with MaxSAT
For the representation of automotive configuration as a
MaxSAT instance we consider the Partial MaxSAT problem.
We use the SAT based specification ϕcar of Section 3 and
divide the clauses into hard and soft ones. First, all cardinal-
ity constraints are marked as hard clauses, because they have
to be satisfied (e.g. it is not possible to configure a car with
more than one steering wheel). Second, it is possible that the
dependencies between components do not necessarily have
to be satisfied (e.g. a dependency could have been created
due to marketing reasons; “No black seats for all Japanese
cars”). On the other hand, technical dependencies have to
be satisfied (e.g. a conflict between an engine and a gearbox).
For simplicity reasons, we also mark all dependencies as hard
clauses.

With the representation above, we can consider the follow-
ing advanced use cases and answer the new arising questions
with the help of a Partial (Weighted) MaxSAT solver:

1. (Maximization of chosen components) A customer
chooses components c1, . . . , cn which lead to an invalid
configuration. We can answer the question, what the
maximal number of the chosen components for a valid
configuration is, by solving Formula (5) with a Partial
MaxSAT solver.

ϕcar︸︷︷︸
hard clauses

∧xc1 ∧ . . . ∧ xcn︸ ︷︷ ︸
soft clauses

(5)

2. (Maximization of priorities) We can generalize the use
case 1 by attaching priorities to the components: A cus-
tomer chooses components c1, . . . , cn which lead to an
invalid configuration. Additionally, the customer has
priorities p1, . . . , pn, pi ∈ N>0, for each component.
We can answer the question, which sum of priorities can
be maximally reached for a valid configuration by solv-
ing Formula (6) with a Partial Weighted MaxSAT solver.

ϕcar︸︷︷︸
hard clauses

∧ (xc1 , p1) ∧ . . . ∧ (xcn , pn)︸ ︷︷ ︸
soft clauses

(6)

3. (Reconfiguration) We can use the introduced tech-
niques in the use cases 1 and 2 for reconfiguration. Let
us assume a customer wants to add, replace, or remove
components of her existing car. She chooses the com-
ponents c1, . . . , ck with priorities p1, . . . , pk ∈ N>0. If
the priority or partial state (hard or soft) of a clause of
an originally chosen component has changed, the origi-
nal clause will be replaced by the new partial weighted
clause. Otherwise, the clause will be kept. We solve
Formula (7) with a Partial Weighted MaxSAT solver to
reach the maximal sum of priorities.

ϕcar︸︷︷︸
hard clauses

∧ (xc1 , p1) ∧ . . . ∧ (xcn , pn)︸ ︷︷ ︸
soft clauses

(7)

To force certain new components to be installed or old
components to be kept, we can designate the correspond-
ing clauses as hard clauses.
To reach a valid reconfiguration for the customer, a re-
configuration scenario can be considered as a process in
different steps:
• Check for validation after the customer chooses

new components with priorities as previously de-
scribed.

• If the hard clauses are unsatisfiable, check for vali-
dation after the sales division sets additional depen-
dencies as soft clauses (with priorities).

• If the hard clauses are unsatisfiable, check for vali-
dation after the engineering divison sets additional
dependencies as soft clauses (with priorites).

If the hard clauses are unsatisfiable after all steps, there
is no valid configuration, because technical limitations
are reached which can not be set as soft clauses. Other-
wise, if the hard clauses are satisfiable in one step, we
can compute the maximal sum of priorities of the soft
clauses while satisfying the hard clauses.

4. (Minimization of costs) The components c1, . . . , cn
have prices p1, . . . , pn, pi ∈ N>0. We want to know
which components have to be chosen, to get a valid con-
figuration with minimal cost. We can answer the ques-
tion by solving Formula (8) with a Partial Weighted Min-
UNSAT solver.

ϕcar︸︷︷︸
hard clauses

∧ (¬xc1 , p1) ∧ . . . ∧ (¬xcn , pn)︸ ︷︷ ︸
soft clauses

(8)

Instead of finding the minimal costs of a valid configu-
ration, we could also compute a valid configuration of

Rouven Walter, Christoph Zengler, Wolfgang Küchlin 23

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

minimal weights, CO2 emissions, or other interesting
targets.

In all situations above, the resulting model of the solver tells
us which components to choose to get the optimum.

Additionally, we can add arbitrary hard clauses to enforce
certain constraints: (1) Unit clauses to enforce the in- or
exclusion of a component; (2) Additional dependencies be-
tween components (e.g. “When engine E1 is chosen, then
choose gearbox G2”; (xE1

→ xG2
)); (3) Additional cardi-

nality constraints (e.g. xD1
∨ xD2

to ensure that one of the
dashboards D1 or D2 will be chosen).

For example, in Situation 4 (minimization of costs), we
could add unit clauses to enforce the inclusion of certain com-
ponents and then compute the minimal costs of the configu-
ration. The result is a valid configuration with minimal costs
which includes our chosen components.

4.1 Example: MaxSAT based Configuration

We reconsider the example in Subsection 3.1.

1. In the second case, the choice of the customer was unsat-
isfiable. With the MaxSAT based approach of configura-
tion we can find an assignment of a valid configuration
where a maximum number of components is included.
After solving Formula (5) with a Partial MaxSAT solver,
we obtain the results shown in Table 3.

Table 3: Customer choices and Partial MaxSAT results
family choice result
engine E1 E1

gearbox G2 G2

control unit C2 C2

dashboard D3 D1

navigation system N2 N2

air conditioner AC1 AC1

alarm system AS1 –
radio R2 R2

We can reach a valid configuration by changing two of
the choices (bold rows in the table) and therefore, we
can keep 6 of our 8 original components at most. For the
alarm system, the resulting model did not set another
alarm system variable to true, because this is an optional
feature.

In general, the result obtained from the solver may not
be the only optimum. There can be other different as-
signments with the same number of satisfied clauses.

2. We consider another case, where the customer chooses
the components with priorities as shown in Table 4. Ad-
ditionally, she wants dashboard D2, D3, or D4. To en-
force this constraint, we add the hard clause (xD2

∨xD3
∨

xD4
).

Table 4: Customer prioritized choices and PWMaxSAT re-
sults

family choice priority result
engine E1 8 E1

gearbox G2 5 G2

control unit C2 7 C2

dashboard
D2 8

D4D3 15
D4 15

navigation system N2 20 –
air conditioner AC1 7 –
alarm system AS1 2 –
radio R2 15 R2

Table 4 shows the result, scoring 50 priority points, after
solving Formula (6).

3. After the previous configuration, the customer wants to
reconfigure her existing car. Table 5 shows her choice.
We can imagine that for technical or financial reasons,
the engine E1 and gearbox G2 can not be replaced. We
set them as hard clauses. However, control unit C2 and
dashboardD4 can possibly be replaced and therefore are
set as soft clauses.

Table 5: Reconfiguration choice and PWMaxSAT results
family state new priorities choice results
engine E1 hard E1 E1

gearbox G2 hard G2 G2

control unit C2 (5, soft) C2 C2

dashboard D4 (2, soft) D4 D2

navigation system – (10, soft) N3 N3

air conditioner – hard AC1 ∨AC2 AC2

alarm system – (5, soft) AS1 AS1

radio R2 (13, soft) R2 –

The results show that dashboard D4 was replaced by
dashboard D2 and radio R2 has to be removed in favor
of other components.

4. Now we associate the components with prices (as shown
in Table 6) and we want to know a valid configuration
with a minimal total price.

24 Rouven Walter, Christoph Zengler, Wolfgang Küchlin

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Table 6: Components with prices
family alternatives
engine E1 E2 E3

price (e) 4,000 2,500 4,500
gearbox G1 G2 G3

price (e) 500 800 300
control unit C1 C2 C3 C4 C5

price (e) 800 2,000 1,500 1,600 1,200
dashboard D1 D2 D3 D4

price (e) 300 500 600 450
navigation system N1 N2 N3

price (e) 100 150 130
air conditioner AC1 AC2 AC3

price (e) 180 100 90
alarm system AS1 AS2

price (e) 300 250
radio R1 R2 R3 R4 R5

price (e) 100 80 200 180 150

For the minimal costs we solve Formula (8) with a Par-
tial Weighted MinUNSAT solver. For the maximal costs
we solve Formula (6) with a Partial Weighted MaxSAT
solver by considering the prices as priorities. The results
are:
• Minimal cost: e 3,900
• Maximal cost: e 8,625

Table 7 lists the components to choose to reach the min-
imal and maximal costs.

Table 7: Choices for minimal and maximal costs
choice

family minimal cost maximal cost
engine E2 E3

gearbox G3 G2

control unit C1 C2

dashboard D1 D3

navigation system – N3

air conditioner – AC2

alarm system – AS1

radio – R3

5 Algorithmic techniques
In order to give the reader an impression of how MaxSAT
can be computed, we present a short incomplete overview of
some algorithmic techniques.

Branch-and-Bound The general branch and bound ap-
proach to explore the search tree of optimization problems
can also be used for solving MaxSAT and its extensions.
Each node of the tree represents a variable of the instance
and has two children for the two values the variable can be
assigned to. Tree pruning is used as soon as a partial solu-
tion becomes worse than the best solution found elsewhere in
the tree. Heuristics have been developed e.g. by Wallace and
Freuder to narrow the search space predicting the final value
of partial solutions [Wallace and Freuder, 1993].

Basic SAT-based Given an unsatisfiable SAT problem ϕ =
{C1, . . . , Cm}, we may iteratively try to remove individual
clauses Ci until the subproblem ϕ′ becomes satisfiable. ϕ′
will then be maximal in the sense that adding another clause
will make it unsatisfiable, but another, larger, subproblem
may exist which could be found by removing clauses from
ϕ in a different order.

In SAT solving, clause removal can be simulated by aug-
menting each clause Ci with a fresh blocking variable bi. As
long as bi is set to false, the solver needs to satisfy Ci, but the
constraint Ci can effectively be blocked by setting bi to true
instead. Now, in order to remove as few clauses as possible,
we add m blocking variables to ϕ as above and restrict the
use of the bi by an additional cardinality constraint CC(k),
which is a formula that prevents more than k of the bi to be set
to true. Iterating over k from below until ϕ(k) becomes satis-
fiable, or from above until ϕ(k) becomes unsatisfiable, gives
us the MaxSAT result m−k, and the subset of clauses whose
bi are set to false forms one satisfiable subset of maximum
cardinality.

Algorithm 1 reflects basic approach. One improvement of
this approach is the use of binary search.

Algorithm 1: Basic SAT-based approach
Input: ϕ = {C1, . . . , Cm}
Output: Minimal number of unsatisfied clauses
ϕ← {C1 ∨ b1, . . . , Cm ∨ bm}
cost← m
while SAT(ϕ ∪ CNF(

∑m
i=1 bi < cost)) do

cost← cost− 1
return cost

Core-guided SAT-based Modern proof-tracing SAT
solvers return an unsatisfiable subset (unsat core) µ ⊆ ϕ
when given an unsatisfiable ϕ. It is then clear that at least one
clause of µ has to be blocked before ϕ can become satisfiable,
and thus the search can be narrowed compared to the basic
approach. An algorithm based on this idea was proposed by
Fu and Malik for partial MaxSAT [Fu and Malik, 2006]. In
every iteration where the instance is unsatisfiable, we add a
new blocking variable to all soft clauses of the unsatisfiable
core and a new cardinality constraint to achieve that exactly
one of the currently added blocking variables has to be
satisfied. We can not just iterate over the unsat cores and
count them, because they may not be disjoint.

This idea can also be extended for partial weighted
MaxSAT [Ansótegui et al., 2009].

6 Experimental Results
For our benchmarks we used product configuration formulas
of a current (2013) product line of the German car manufac-
turer BMW. We added unit clauses to create unsatisfiable cus-
tomer orders. We defined the following three categories for
hard and soft clauses:
• Order: Soft clauses are unit clauses of the customer’s

order. All other clauses are hard. This asks, wich of the

Rouven Walter, Christoph Zengler, Wolfgang Küchlin 25

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

customer’s wishes can be maximally satisfied.

• Packages: Soft clauses are clauses which represent
packages, e.g. a sports package, which triggers all rel-
evant sports components. The unit clauses of the cus-
tomer’s order and all other clauses are hard. This asks,
which of the package restrictions can be maximally sat-
isfied w.r.t. the customer’s wishes.

• Packages & more: Soft clauses are package clauses
and additional other sales relevant conditions. The unit
clauses of the customer’s order and all other clauses are
hard. This asks, which of the package restrictions and
additional restrictions can be maximally satisfied w.r.t.
the customer’s wishes.

The upper half of Table 8 shows detailed statistics about each
category. The second half of the table shows how many in-
stances have an optimum. No optimum means that there is
at least one conflict involving only hard clauses. The average
optimum is the average of the result of the minimal number
of unsatisfiable clauses. For example, the average optimum
of 2.127 within the ‘Order’ category means that on average
2.127 of the customer’s choices can not be satisfied.

Table 8: Benchmark details
Benchmark categories

Order Packages Packages & more
#instances 777 777 777
Avg. #variables 896 896 896
Avg. #hard clauses 4474 3928 3592
Avg. #soft clauses 15 561 897
#no optimum 0 688 0
#with optimum 777 89 777
Avg. optimum 2.127 1.348 4.067

We applied our benchmarks to three different state-of-the-
art MaxSAT solvers, namely:

• akmaxsat [Kügel, 2012]: A partial weighted MaxSAT
solver based on a branch-and-bound approach. One of
the best performing solvers in last year’s MaxSAT com-
petition1.

• Fu & Malik [Fu and Malik, 2006]: A partial MaxSAT
solver based on exploiting unsatisfiable cores and adding
blocking variables to each soft clause of each found un-
satisfiable core.

• PM2 [Ansótegui et al., 2009]: A partial MaxSAT solver
based on exploiting unsatisfiable cores. But unlike the
Fu & Malik solver this approach only uses exactly one
blocking variable to each clause.

For akmaxsat we used the implementation of Adrian Kügel2.
We implemented the Fu & Malik and PM2 algorithms on top
of our own Java SAT solver, which is optimized for our in-
dustrial collaborations. The cardinality constraints in the Fu
& Malik approach are only of the form

∑n
i=1 xi = 1 for given

1http://maxsat.ia.udl.cat:81/12
2http://www.uni-ulm.de/in/theo/m/alumni/

kuegel.html

variables x1, . . . , xn. We encode this constraint through the
constraints (

∨n
i=1 xi) and

(∧n
i=1

∧n
j=i+1(¬xi ∨ ¬xj)

)
. The

cardinality constraints in the PM2 approach uses general lim-
itations, which we implemented with the encoding proposed
in [Bailleux et al., 2009].

All our benchmarks were run on the same environment:
Operating System: Ubuntu 12.04 64 Bit; Processor: Intel
Core i7-3520M, 2,90 GHz; Main memory: 8 GB; JVM 1.7.0
(for Fu & Malik and PM2).

Table 9 shows the results of our time measurements of
each solver in each category. The listed times are the aver-
age times a solver needed to solve an instance of a category.
We listed the average time in each category Solver akmaxsat
has an average time of remarkable less than 0.6 seconds in
each category. Our implementation of Fu & Malik has a rea-
sonable average time of less than 6 seconds in each category.
Our implementation of PM2 has a reasonable average time
for the first category ‘Order’, but exceeded our time limit of
3, 600 seconds per instance on too many instances of cate-
gories ‘Packages’ and ‘Packages & more’ to get a reasonable
average time.

Table 9: Benchmark results with a time limit of 3,600 sec.
per instance

Avg. time (sec) akmaxsat Fu & Malik PM2
Order 0.165 4.367 4.180
Packages 0.025 1.664 exceeded limit
Packages & more 0.535 5.387 exceeded limit

Figures 1, 2 and 3 show the performance of each solver
in the first category ‘Order’. These figures show the relation
between the optimum and the response time of the instances.
Especially for Fu & Malik and PM2 the response time seems
to grow linearly with increasing optimum.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7

Ti
m

e
 (

se
c)

Optimum (quantity)

Figure 1: Benchmark ‘Order’ with akmaxsat

26 Rouven Walter, Christoph Zengler, Wolfgang Küchlin

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7

Ti
m

e
 (

se
c)

Optimum (quantity)

Figure 2: Benchmark ‘Order’ with Fu & Malik

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7

Ti
m

e
 (

se
c)

Optimum (quantity)

Figure 3: Benchmark ‘Order’ with PM2

In Figure 4 we can also recognize the linear growing re-
sponse time with increasing optimum. Also note the lower
line of quickly solvable instances.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
 (

se
c)

Optimum (quantity)

Figure 4: Benchmark ‘Packages & more’ with Fu & Malik

7 Related Work
In [Junker, 2004] general satisfaction problems are consid-
ered, where we have a knowlegde base of constraints which
have to be satisfied and customer requirements, which we
would like to satisfy. In the context of MaxSAT, the knowl-
edge base can be considered as hard clauses, whereas the cus-
tomer requirements can be considered as soft clauses. In the
case of inconsistency, the proposed algorithm QuickXplain
delivers preferred explanations, which are based on a given
total ordering of the constraints.

The work of [Reiter, 1987] proposes an algorithm for com-
puting minimal diagnoses using a conflict detection algo-
rithm. A diagnosis is a minimal subset ∆ of the customer
requirements, such that the constraints without ∆ is consis-
tent. In [Felfernig et al., 2012] another algorithm is proposed,
called FastDiag, which computes a preferred minimal diagno-
sis without calculating the corresponding conflicts.

8 Conclusion
In this paper we showed detailed examples of how MaxSAT
and its extensions can be applied in automotive configuration.
With this approach we are able to repair an unsatisfiable cus-
tomer order by computing the optimal solution which satisfies
as many of the customer’s choices as possible. Furthermore,
we showed how MaxSAT also can be used in reconfiguration
scenarios. From an already configured car we can compute
the minimal number of components to change when adding,
changing, or removing components.

We created realistic benchmarks for our MaxSAT applica-
tions out of the product formulas of our commercial collab-
oration with BMW. Our time measurements of these bench-
marks against the state-of-the-art MaxSAT solvers akmaxsat,
Fu & Malik, and PM2, showed that we have a reasonable re-
sponse time, except for PM2 in two categories. These results
suggest that MaxSAT can be applied for industrial automotive
(re-)configuration problems.

References
[Ansótegui et al., 2009] Carlos Ansótegui, Maria Luisa

Bonet, and Jordi Levy. On solving MaxSAT through SAT.
In Proceedings of the 2009 conference on Artificial Intel-
ligence Research and Development, pages 284–292. IOS
Press Amsterdam, Amsterdam, Netherlands, 2009.

[Ası́n et al., 2010] Robert Ası́n, Robert Nieuwenhuis, Al-
bert Oliveras, and Enric Rodrı́guez-Carbonell. Practical
algorithms for unsatisfiability proof and core generation
in SAT solvers. AI Communications, 23(2–3):145–157,
2010.

[Astesana et al., 2010] Jean Marc Astesana, Yves Bossu,
Laurent Cosserat, and Helene Fargier. Constraint-based
modeling and exploitation of a vehicle range at Renault’s:
Requirement analysis and complexity study. In Proceed-
ings of the 13th Workshop on Configuration, pages 33–39,
2010.

[Bailleux et al., 2009] Olivier Bailleux, Yacine Boufkhad,
and Olivier Roussel. New encodings of pseudo-boolean

Rouven Walter, Christoph Zengler, Wolfgang Küchlin 27

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

constraints into CNF. In Oliver Kullmann, editor, Theory
and Applications of Satisfiability Testing—SAT 2009, vol-
ume 5584 of Lecture Notes in Computer Science, pages
181–194. Springer Berlin Heidelberg, 2009.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfi-
ability: Volume 185 Frontiers in Artificial Intelligence and
Applications, volume 185. IOS Press, Amsterdam, Nether-
lands, 2009.

[Felfernig et al., 2012] A. Felfernig, M. Schubert, and C. Ze-
hentner. An efficient diagnosis algorithm for inconsistent
constraint sets. Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing, 26(1):53 – 62, 2012.

[Friedrich et al., 2011] Gerhard Friedrich, Anna Ryabokon,
Andreas A. Falkner, Alois Haselböck, Gottfried Schen-
ner, and Herwig Schreiner. (re)configuration using answer
set programming. In Kostyantyn Shchekotykhin, Dietmar
Jannach, and Markus Zanker, editors, IJCAI-11 Config-
uration Workshop Proceedings, pages 17–24, Barcelona,
Spain, July 2011.

[Fu and Malik, 2006] Zhaohui Fu and Sharad Malik. On
solving the partial MAX-SAT problem. In Armin Biere
and Carla P. Gomes, editors, Theory and Applications
of Satisfiability Testing—SAT 2006, volume 4121 of Lec-
ture Notes in Computer Science, pages 252–265. Springer
Berlin Heidelberg, 2006.

[Junker, 2004] Ulrich Junker. QUICKXPLAIN: Preferred
explanations and relaxations for over-constrained prob-
lems. In Deborah L. McGuinness and George Ferguson,
editors, Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence, Sixteenth Conference on In-
novative Applications of Artificial Intelligence, pages 167
– 172. AAAI Press / The MIT Press, 2004.

[Küchlin and Sinz, 2000] Wolfgang Küchlin and Carsten
Sinz. Proving consistency assertions for automotive prod-
uct data management. Journal of Automated Reasoning,
24(1–2):145–163, 2000.

[Kügel, 2012] Adrian Kügel. Improved exact solver for the
weighted max-sat problem. In Daniel Le Berre, editor,
POS-10. Pragmatics of SAT, volume 8 of EPiC Series,
pages 15–27. EasyChair, 2012.

[Manhart, 2005] Peter Manhart. Reconfiguration – a prob-
lem in search of solutions. In Dietmar Jannach and
Alexander Felfernig, editors, IJCAI-05 Configuration
Workshop Proceedings, pages 64–67, Edinburgh, Scot-
land, July 2005.

[Marques-Silva and Planes, 2008] João Marques-Silva and
Jordi Planes. Algorithms for maximum satisfiability us-
ing unsatisfiable cores. In Design, Automation and Test in
Europe, pages 408–413. IEEE, 2008.

[Marques-Silva, 2008] João Marques-Silva. Practical appli-
cations of boolean satisfiability. In Discrete Event Sys-
tems, 2008. WODES 2008. 9th International Workshop on,
pages 74–80. IEEE, 2008.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32(1):57 – 95, April
1987.

[Sinz, 2005] Carsten Sinz. Towards an optimal CNF en-
coding of boolean cardinality constraints. In Peter
van Beek, editor, Principles and Practice of Constraint
Programming—CP 2005, Lecture Notes in Computer Sci-
ence, pages 827–831. Springer Berlin Heidelberg, 2005.

[Wallace and Freuder, 1993] Richard Wallace and Eugene C.
Freuder. Comparative studies of constraint satisfaction and
Davis-Putnam algorithms for maximum satisfiability prob-
lems. In David S. Johnson and Michael A. Trick, editors,
Cliques, Coloring, and Satisfiability: Second DIMACS Im-
plementation Challenge, volume 26 of Discrete Mathe-
matics and Theoretical Computer Science, pages 587–615.
American Mathematical Society, USA, 1993.

[Zhang and Malik, 2003] Lintao Zhang and Sharad Malik.
Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other ap-
plications. In Proceedings of the conference on Design,
Automation and Test in Europe, volume 1, pages 10880–
10885. IEEE Computer Society, 2003.

28 Rouven Walter, Christoph Zengler, Wolfgang Küchlin

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Interactive Configuration of High Performance Renovation of Apartment
Buildings by the use of CSP

É. Vareillesa, C. Thuesenb, M. Falcona,c and M. Aldanondoa

a: Toulouse University, Mines Albi-Carmaux - France
b: Technical University of Denmark - Denmark

c: TBC Générateur d’Innovation, Colomiers - France
Corresponding author: elise.vareilles@mines-albi.fr

Abstract
This paper is a prospective study which looks at the
possibility of configuring high performance reno-
vation of apartment buildings by the use of con-
straint satisfaction problem (CSP). This study is
one part of a project called CRIBA which aims
to industrialize high performance thermal renova-
tion of mid-rise (up to seven stories) apartment
buildings. The renovation is based on external
rectangular panels, always comprising insulation
and cladding, and sometimes including, in addi-
tion, doors, windows or solar modules. The pan-
els can be fixed directly onto the walls or onto a
metal structure around the whole building. With the
new thermal envelope and equipment, the building
must achieve a really low energy performance of
25 kWh/m2/year. A configuration system, based
on CSP approaches, will simultaneously enable the
interactive definition of the renovation, the associ-
ated bill of material (BOM) and the building site
assembly process. In Section two, we set out the
industrial problem of residential buildings renova-
tion and explain how a configurator can support it.
Then, in the third section, the renovation configu-
ration process is described. In the fourth and final
section, we present how the renovation configura-
tion can be addressed with constraints, and we in-
troduce relevant CSP approaches. Through out the
article, industrial examples illustrate our proposal.

1 Introduction
The global contribution from buildings (residential and com-
mercial) towards energy consumption has steadily increased.
Buildings account for around 20% and 40% of the total fi-
nal energy consumption in developed countries: 37% in the
EU [Perez-Lombard et al., 2008], 36% in the USA [Council,
2013] and 31% in Japan [Center, 2012]. It has now exceeded
the other major sectors: industry and transportation. Growth
in population, enhancement of building services and comfort
levels, together with the rise in time spent inside buildings as-
sure the upward trend in energy demand will continue in the
future. Therefore, reducing energy consumption of the build-
ing sector is one of our century’s challenges. For this reason,

it is a prime objective for energy policy at regional, national
and international levels.

In several countries, research works are carried out on the
efficient measures to take to reduce energy consumption of
the building stock. Most states set regulations to improve the
energy performance of new buildings. However, the annual
rate of construction of new dwellings is only 1.1% in Europe
[Poel et al., 2007]. It is therefore very important to renovate
the existing buildings to really reduce their energy consump-
tion and to assist the retrofit process by the development of
decision support systems [Juan et al., 2010].

This study is one part of a research project called CRIBA,
which aims to industrialize high performance thermal renova-
tion of apartment buildings. In this project, a very innovative
renovation system based on large timber frame panels will be
designed. Moreover, all the tools needed to industrialize the
renovation process will be developed:
• a new method for three-dimensional building survey and

modelling,
• a configuration system for the design of the buildings

new thermal envelope (bill of material and assembly pro-
cess),
• a working site planning model with resource constraints.
The aim of this paper is to present a prospective study on

the development of the interactive configuration system for
the renovation of apartment buildings.

Therefore, the remainder of the paper is organized as fol-
lows. In Section 2, we present the building renovation prob-
lem and how the configurator can support apartment buildings
renovation. In Section 3, we put forward some ideas on the
generic renovation bill of material. In Section 4, we outline
the building renovation configuration process. In Section 5,
we identify the different kinds of constraints that are needed
in order to make the apartment building renovation model.

2 Building Renovation Configuration Needs
In this section, we introduce the building renovation problem
which is at the origin of our work. Then, we express what the
configurator is expected to generate as results.

2.1 Building Renovation Problem
The industrialized high performance thermal renovation is
based on external rectangular panels, always comprising in-

Élise Vareilles, Christian Thuesen, Marie Falcon, Michel Aldanondo 29

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

sulation and cladding, and sometimes including, in addition,
doors, windows or solar modules. Although the shape of the
panels is a major limitation for the architectural creativity,
this assumption is the key of renovation industrialization and
matches most of apartment buildings.

The building sector is very dependent on hand-made meth-
ods which are not always synonymous with quality guaran-
tee [Falcon and Fontanili, 2010]. Therefore, the aim of the
CRIBA project is to prefabricate all the panels needed for a
renovation, in a correct order, then to deliver them directly
to the working site and finally to hang them on the faades.
Therefore, the renovation process enables thermal renova-
tions:
• at low cost, considering all the positive elements, fixed

cost, logistic, etc,
• in a short time,
• of high quality,
• in a good environmental balance,
• without rehousing the inhabitants during the renovation

works.
Depending on the building strength of materials, the panels

can be fixed directly onto the faades or onto a metal skeleton
around the whole building. With the new thermal envelope
and equipment, the building must achieve a really low energy
performance of 25kWh/m2/year. In order to reach such
a low energy performance, the new thermal envelope has to
wrap the whole building. All the faades are covered by non-
overlapping panels and are space-partitioned.

2.2 Building Renovation Configuration
The interactive configuration system for the renovation of
apartment buildings will simultaneously enable the interac-
tive definition of the renovation thanks to the associated bill
of material [Felfernig, 2007] and the building site assembly
process.

The bill of material is a list of the components and
sub-components, sub-assemblies, and the quantities of each
needed to manufacture an end product. It can have multiple
options and variants. In our case, we consider:
• the new thermal envelope as the end product;
• the facade new envelopes as the sub-assemblies;
• the complete panels as sub-components;
• the configurable components as leaves of the bill of ma-

terial (BOM):
– the panels, which are placed on the faades, include

wood structure, insulation and cladding (three or
four types at the moment), as shown in Fig. 1,

– the angles, which make the junction between two
faades. An angle is a specific type of panel which
cannot include other components,

– the windows, doors, solar modules and balconies,
– the metal fasteners, which are used to fix either

metal profiles or directly the panels onto the faades.
There are several types of metal fastener depending
on their type (fasteners to fix metal profiles, to hang

Figure 1: CRIBA Panels

panels or to provide wind bracing of panels), their
load bearing capacity and the distance between the
structural elements of the present facade and the
panels,

– the metal profiles, which are used when the struc-
tural elements of the present facade cannot support
the load of the new envelope. They are fixed onto
the metal fasteners and the panels are hung on them.
There is only one type of metal profile but its length
has to fit the facade height.

The assembly process consists in a set of tasks to be car-
ried out in order to assemble the new frame and envelope all
around the building. It comprises some tasks that have al-
ways to be carried out, such as positioning and fixing metal
fasteners, and some that are optional, such as fixing the metal
profiles onto the metal fasteners.

At least, the configurator will give an idea of the renovation
global cost which includes the costs of raw materials, trans-
portation, labour and lifting devices.

On the first hand, in the configuration community, many
authors (among them [Sabin and Weigel, 1998], [Soininen
et al., 1998]) have shown that product configuration could
be efficiently modelled and aided when considered as a Con-
straints Satisfaction Problem (CSP) [Montanari, 1974]. On
the other hand, in the civil engineering community and in
the constraints community, many authors ([Honda and Mi-
zoguchi, 1995], [Junker, 2006], [Medjdoub and Yannou,
2001], [Zawidzki et al., 2011] or [Regateiro et al., 2012])
have shown that spatial layout can be solved with CSP. Con-
sequently, we address the building renovation configuration
with constraints and filtering algorithms.

3 Generic BOM Model
In this paper, we focus on the interactive definition of the ren-
ovation bill of material. In this section, we highlight the main
variables of the configurable components of the renovation
BOM. We focus in this paper on the panels and the angles.
At the end of the configuration, all the configurable compo-
nents variables have a single value, given either by the user or
deduced by the configurator.

30 Élise Vareilles, Christian Thuesen, Marie Falcon, Michel Aldanondo

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

3.1 Panels
The panels are rigid 2D rectilinear rectangles. That means
that their sides are parallel to the facade reference axis. Let
us consider one facade. All the panels covering it belong to
a unique vertical plane. They are adjacent (they are at least
one side in common) and are not overlapping themselves. By
the way, they have all the same orientation. They cover com-
pletely the facade and make a partition of it.

The main variables of a panel refer to:
• its width [minw,maxw],
• its length [minl,maxl],
• its coordinates (abscissa and ordinate),
• its insulation thickness [mini,maxi],
• the insulation type (mineral wool or cellulose),
• its weight, which depends on its dimensions, the insula-

tion type, and the components that are included in itself.
If the panel includes other components (windows, doors or

solar modules), we need to know exactly for each of them:
• its width [minw,maxw],
• its length [minl,maxl],
• its relative position on the panel (x and y),
• its type and reference code.
A minimal distance is required between the sides of the

panel and the position of other components: the distance can-
not be lower than 90mm in order to preserve the panel stiff-
ness.

3.2 Angles
The prefabricated angles are rigid 3D L-polyomino tetracubes
which are placed at the building corners. The corners are at
the intersection of two consecutive and perpendicular facade
planes. We assume then that the angles are right. Otherwise,
a specific design task must be carried out in order to design
the relevant angles.

Let us considering a corner. All the angles covering it be-
long to a unique vertical row. They are adjacent (they are
at least one side in common) and are not overlapping them-
selves. By the way, they have all the same orientation. They
covered completely the corner and make a partition of it.

The main variables of an angle refer to:
• its width [minw,maxw],
• its right length [minrl,maxrl],
• its left length [minll,maxll],
• its coordinates (abscissa and ordinate),
• its insulation thickness [mini,maxi],
• the insulation type (mineral wool or cellulose),
• its weight, which depends on its dimensions and the in-

sulation type.
For the first version of the BOM, the prefabricated angle

cannot include other components. The angles dimensions di-
rectly depend on the sizes of their adjacent panels, with a
minimal length (right and left) equal to 90 mm in order to
preserve the angle stiffness.

4 Building Renovation Configuration Process
The building renovation configuration is a top-down and
multi-step process, which progressively converges from the
working site to the configurable components. The user has
to input some information and data in order to configure the
renovation. After each user input, the configurator removes
inconsistent values and guides progressively the user to a con-
sistent solution. The user has to follow this process and gives
information on:
• the whole working site. The working site description

has an impact on the panels dimensions. Let us focus on
the working site accessibility and its local atmosphere.
Concerning its accessibility, if you can access the work-
ing site with special convoys, the panels can be as wide
and long as needed. Otherwise, the dimensions of the
panels are constrained by the size of the trucks which
can access to the working site. Concerning the local at-
mospheric, if the working site area is very windy, wind
speed peaks≥ 80 km.h−1, the panels have to be smaller
in order to be fixed onto the faades, and the renovation
lasts longer because of nonworking periods.
• the block of apartment buildings. The block description

has directly an impact on the hoisting equipment and in-
directly on the panels dimensions. If the block cannot
be accessible with a tower crane, the panels have to be
smaller in order to be conveying to the faades with an
other suitable hoisting equipment, such as a telescopic
boom lift.
• the apartment building. The apartment building descrip-

tion has an impact on the panels dimensions. Let us con-
sider only the apartment building height. If the apart-
ment building height is lower than twelve meters (four
stories), the height of the panels can be the same as the
building one so that the panels are fixed vertically on the
faades.
• the faades. Let us focus on a facade.

1. First of all, the user has to describe precisely the
structure and the geometry of the facade. Consider-
ing the structure of the facade, (s)he needs to input
where the metal fasteners can be fixed on the fa-
cade. A structural study has to be done in order
to characterize the load bearing capacity of every
area of the facade. Considering the geometry, the
positions of windows, doors and balconies have to
be known precisely. Only a topographic survey can
provide these information.

2. Regarding these areas and their characteristics, the
decision of fixing the panels directly on the facade
or on the metal profiles can be made. This decision
has an impact on the BOM (metal fastener type and
optional metal profiles) and on the assembly pro-
cess (tasks devoted to metal profiles, such as deliv-
ery, assembly and adjustment).

3. Having information about the working site, the
block, the apartment building and the facade and
the impact on the panels dimensions, the drawing
of the facade layout can start. The user has now to

Élise Vareilles, Christian Thuesen, Marie Falcon, Michel Aldanondo 31

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

indicate what the aesthetic effect she/he wants for
the facade. For instance, she/he can want continu-
ous vertical joints, which means that the panels are
fixed vertically or she/he can want a checkerboard
effect with a lot of similar panels.

4. Knowing the facade layout, each panel has to be
configured. If the panel is solid, one can decide to
add solar modules or to add an exit door. If the
panel has to include windows, doors and/or bal-
conies, the suitable reference code has to be se-
lected for each of them.

• the angles. The renovation configuration finishes by the
configuration of the angles. At this step, only the height
of angles has to be determined.

At any time in every step of the configuration process, the
user can change her/his inputs and see their impact on the
configuration solutions.

5 Building Renovation Configuration and
Constraints

Interactive renovation configuration is provided by constraint
propagation that prunes bad solutions and progressively
guides the way to good ones. In apartment buildings reno-
vation, the range of knowledge to exploit and to model leads
us to integrate into a single configurator different constraints
types as well as their filtering methods. In this section, we
outline the kind of variables and constraints that are neces-
sary to formalize apartment building renovation model.

5.1 Classical CSP Approaches
In building renovation configuration, we have to formalize
different kinds of knowledge relevant to:
• civil engineering regulations that must be followed ab-

solutely to the letter. For instance, fire barriers have to
be installed between two consecutive stories in order to
stop the spread of fire,
• civil engineering know-how that is the core knowledge

of the companies involved in the CRIBA project,
• working site assembly process that allows us to define

the suitable way of assembling the new frame and enve-
lope all around the building.

For instance, we have seen in Section 4, that the working
site local atmosphere has an impact on the panels dimensions:
if the working site area is very windy, wind speed peaks≥ 80
km.h−1 several times a year, the panels have to be smaller in
order to be fixed onto the faades without stopping the renova-
tion with nonworking periods.

As the range of knowledge to model is wide, we need to
use different CSP approaches and their filtering algorithms,
such as discrete CSP ([Montanari, 1974], [Mackworth, 1977],
[Bessire and Cordier, 1993], [Faltings, 1994]), continuous
CSP ([Lhomme, 1993] or [Benhamou et al., 1994]) and
mixed CSP ([Gelle, 1998]) depending on the type of the vari-
ables (discrete, continuous, symbolic or numeric) and the
type of constraints (compatibility constraints or mathemati-
cal formulae).

5.2 Groups and Multi-instances of Constraints
In the renovation configuration, we have to cope with several
instances of the same configurable components. For instance,
in order to cover a facade with its new envelope, we need to
configure x times a panel (such as described in Subsection
3.1). We do not know in advance how many panels will be
necessary, as it depends on a lot of data (working site descrip-
tion, block description, etc.). Therefore, we need to group
variables and constraints into sets or classes, which can be
instantiated as much as needed.

5.3 Dynamic Constraints
We have seen in the building renovation configuration pro-
cess, Section 4, that we can decide to fix the panels on a metal
envelope, or to create new openings on a facade. These de-
cisions imply firstly the consideration of new components in
the BOM and secondly, the insert of their assembly tasks in
the assembly process. Therefore, we need to take into account
the activation of configurable components as defined by [Mit-
tal and Falkenhainer, 1990], [Sabin and Freuder, 1996] and
[Faltings et al., 1992].

5.4 Geometric Constraints
In order to prefabricate the panels, we need to determine pre-
cisely the dimensions and the position of each component on
the panels. The accuracy of the topographic measures and the
precision of the components dimensions and position are the
crucial factors for the industrialization of the building renova-
tion and the goals of the CRIBA project. Therefore, in order
to do so, we need to integrate to the configurator geometric
constraints (for a complete survey, see, [Dohmen, 1995] or
[Fudos and Hoffmann, 1997], and for more recent work see
[Jermann et al., 2000], [Zawidzki et al., 2011] or [Regateiro
et al., 2012]).

5.5 Global Constraints
As we cannot know in advance how many panels are needed
to cover a facade, we have to cope with constraints that de-
pend on the number of instances of the same class. For in-
stance, if the height of the facade is covered with more than
one panel, the sum of all the panels heights has to be equal
to the facade one. Therefore, we need to integrate and filter
different kinds of global constraints [van Hoeve and Katriel,
2006].

6 Conclusion
The aim of this paper has been to present a prospective study
on the development of the interactive configuration system
for the renovation of apartment buildings.

Firstly, we have presented the apartment buildings reno-
vation problem and what the main objectives of the CRIBA
configurator are: the interactive definition of the renovation
thanks to the associated bill of material and the building site
assembly process as well as a first cost estimation. Then we
have focused on two configurable components that are the
panels and the angles and highlighted their main character-
istics. In the fourth section, we have outlined the top-down
and multi-step building renovation configuration process. In

32 Élise Vareilles, Christian Thuesen, Marie Falcon, Michel Aldanondo

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

the final section we have put forward some ideas on the dif-
ferent kinds of CSP approaches we have to integrate in the
configurator in order to support and guide the configuration
of buildings renovation.

The apartment buildings renovation configuration is a chal-
lenge however you look at it. First of all, we want to in-
dustrialize a process that is nowadays traditionally made by
craftsmen. This point is quite a revolution for the civil engi-
neering field where only few industrial engineering methods
are applied, and in particular in SMEs. Secondly, in order to
be able to use a configurator, we need to extract, validate and
formalize relevant knowledge. In our application field, the na-
ture and the origin of knowledge are quite various. We have
therefore to use different types of variables and constraints.
The filtering engine has therefore to integrate different kinds
of propagation methods. Thirdly, we need to cope with differ-
ent variables priorities. For instance, all the variables which
describe the whole working site have a strong impact on the
dimensions of the panels and cannot be changed: we cannot
decide to use a special convoy if the working site is not acces-
sible with such a convoy. If an inconsistent solution is found,
we will propose to the user to change her/his choices firstly
on the panels and then to progressively zoom out to the whole
working site.

As we are still in the very earliest stage of the CRIBA
project and as apartment building renovation configuration
is quite a complex process, we need to model in details
the BOM components and their constraints. When this is
done, we have to select, analyse, adapt and integrate con-
straints approaches and filtering algorithms in our propaga-
tion engine CoFiADe. CoFiADe has already been used for
supporting heat treatments configuration [Aldanondo et al.,
2006], simultaneously product and planning configurations
[Vareilles et al., 2008] and helicopters maintenance configu-
ration [Vareilles et al., 2009]. The development of the graph-
ical user interface in order to allow the user to see the result
of her/his configuration is also a challenge. It is not the core
of the configuration problem but it is clearly a need for the
companies involved in the project.

Acknowledgements
The authors wish to acknowledge the TBC Générateur
d’Innovation company, the Millet and SyBois companies and
all partners in the CRIBA project, for their involvement in the
construction of the CSP model.

References
[Aldanondo et al., 2006] M. Aldanondo, E. Vareilles,

K. Hadj-Hamou, and Paul Gaborit. A constraint based
approach for aiding heat treatment operation design and
distortion evaluation. In Artificial Intelligence Applica-
tions and Innovations, volume 204 of IFIP International
Federation for Information Processing, pages 254–261.
Springer US, 2006.

[Benhamou et al., 1994] F. Benhamou, D. Mc Allester, and
P. Van Hentenryck. Clp(intervals) revisited. In ILPS’94,
pages 1–21, 1994.

[Bessire and Cordier, 1993] C. Bessire and M.O. Cordier.
Arc-consistency and arc-consistency again. In AAAI,
pages 108–113, 1993.

[Center, 2012] The Energy Conservation Center. Energy
Conservation Handbook. Japan, 2012.

[Council, 2013] U.S. Green Building Council. New Con-
struction Reference Guide, 2013.

[Dohmen, 1995] Maurice Dohmen. A survey of constraint
satisfaction techniques for geometric modeling. Comput-
ers & Graphics, 19(6):831–845, 1995.

[Falcon and Fontanili, 2010] M . Falcon and F . Fontanili.
Process modelling of industrialized thermal renovation of
apartment buildings. In eWork and eBusiness in Archi-
tecture, Engineering and Construction, European Confer-
ence on Product and Process Modelling (ECPPM 2010),
September 2010.

[Faltings et al., 1992] B. Faltings, D. Sam-Haroud, and
I. Smith. Dynamic constraints propagation with contin-
uous variables. European Conference on Artificial Intelli-
gence, pages 754–758, 1992.

[Faltings, 1994] B. Faltings. Arc consistency for continuous
variables. In Artificial Intelligence, volume 65, pages 363–
376, 1994.

[Felfernig, 2007] A. Felfernig. Standardized configuration
knowledge representations as technological foundation for
mass customization. In IEEE Transactions on Engineering
Management, volume 54, pages 41–56, February 2007.

[Fudos and Hoffmann, 1997] I. Fudos and C. Hoffmann. A
graph-constructive approach to solving systems of ge-
ometric constraints. ACM Transactions on Graphics,
16(2):179–216, 1997.

[Gelle, 1998] E. Gelle. On the generation of locally con-
sistent solution spaces in mixed dynamic constraint prob-
lems. Thse de doctorat, École Polytechnique Fdrale de
Lausanne, Suisse, 1998.

[Honda and Mizoguchi, 1995] K. Honda and F. Mizoguchi.
Constraint-based approach for automatic spatial layout
planning. In Proceedings of the 11th Conference on Artifi-
cial Intelligence for Applications, CAIA ’95, Washington,
DC, USA, 1995. IEEE Computer Society.

[Jermann et al., 2000] C. Jermann, G. Trombettoni,
B. Neveu, and M. Rueher. A constraint program-
ming approach for solving rigid geometric systems. In
Constraint Programming, Singapore, 2000.

[Juan et al., 2010] Y.K. Juan, P. Gao, and J. Wang. A hy-
brid decision support system for sustainable office build-
ing renovation and energy performance improvement. En-
ergy and Buildings, 42(3):290–297, March 2010.

[Junker, 2006] U. Junker. Handbook of Constraint Program-
ming, chapter Chapter 24. Configuration. Elsevier, 2006.

[Lhomme, 1993] O. Lhomme. Consistency techniques for
numeric CSP. In International Joint Conference on Arti-
ficial Intelligence, pages 232–238, Chambry, France, Aot
1993.

Élise Vareilles, Christian Thuesen, Marie Falcon, Michel Aldanondo 33

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

[Mackworth, 1977] A.K. Mackworth. Consistency in net-
works of relations. In Artificial Intelligence, volume 8(1),
pages 99–118, 1977.

[Medjdoub and Yannou, 2001] B. Medjdoub and B. Yannou.
Dynamic space ordering at a topological level in space
planning. In Artificial Intelligence in engineering, vol-
ume 15, pages 47–60, January 2001.

[Mittal and Falkenhainer, 1990] S. Mittal and B. Falken-
hainer. Dynamic constraint satisfaction problems. In
AAAI, pages 25–32, Boston, US, 1990.

[Montanari, 1974] U. Montanari. Networks of constraints:
fundamental properties and application to picture process-
ing. In Information sciences, volume 7, pages 95–132,
1974.

[Perez-Lombard et al., 2008] L. Perez-Lombard, J. Ortiz,
and C. Pout. A review on buildings energy consump-
tion information. Energy and Buildings, 40(3):394 – 398,
2008.

[Poel et al., 2007] B. Poel, G. van Cruchten, and C.A.
Balaras. Energy performance assessment of existing
dwellings. Energy and Buildings, 39(4):393–403, April
2007.

[Regateiro et al., 2012] F. Regateiro, J. Bento, and J. Dias.
Floor plan design using block algebra and constraint sat-
isfaction. Advanced Engineering Informatics, 26(2):361–
382, April 2012.

[Sabin and Freuder, 1996] D. Sabin and E.C. Freuder. Con-
figuration as composite constraint satisfaction. In Artificial
Intelligence and Manufacturing Research Planning Work-
shop, pages 153–161, 1996.

[Sabin and Weigel, 1998] D. Sabin and R. Weigel. Product
configuration frameworks a survey. In IEEE Intelligent
Systems, volume 13, pages 42–49, 1998.

[Soininen et al., 1998] T. Soininen, T. Tiihonen, T. Mnnist,
and R. Sulonen. Towards a general ontology of configura-
tion. Artificial Intelligence for Engineering Design, Anal-
ysis and Manufacturing, 12(4):357–372, 1998.

[van Hoeve and Katriel, 2006] Willem-Jan van Hoeve and
Irit Katriel. Handbook of Constraint Programming, chap-
ter Chapter 6. Global Constraints. Elsevier, 2006.

[Vareilles et al., 2008] E. Vareilles, M. Aldanondo, M. Dje-
fel, and P. Gaborit. Coupling interactively product and
project configuration: a proposal unsing constraints pro-
gramming. In International Mass Customization and In-
ternational Conference on Economic, Technical and Or-
ganisationel Aspects of Product Configuration Systems,
June 2008.

[Vareilles et al., 2009] E. Vareilles, C. Beler, E. Villeneuve,
M. Aldanondo, and L. Geneste. Interactive configuration
and time estimation of civil helicopter maintenance. In
Workshop on Configuration in the European International
Joint Conferences on Artificial Intelligence, Los Angeles,
California, USA, July 2009.

[Zawidzki et al., 2011] M. Zawidzki, K. Tateyama, and
I. Nishikawa. The constraints satisfaction problem ap-
proach in the design of an architectural functional layout.
Engineering Optimization, 43(9):943–966, 2011.

34 Élise Vareilles, Christian Thuesen, Marie Falcon, Michel Aldanondo

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Configuration Dynamics Verification Using UPPAAL
David Fabian

Dept. of Mathematics
Faculty of Nuclear Sciences and

Physical Engineering
Czech Technical University in Prague

(fabiadav@fjfi.cvut.cz).

Radek Mařík
Dept. of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague.

Abstract
Modern software applications can have very complicated
internal dynamics. Most of the software tools are writ-
ten in an imperative programming language which can
quickly become impractical for describing complex dy-
namics. Also, it is very hard to verify that the code
actually covers fully all aspects of the tool’s dynamics.
Propagation rules are suitable as a means for specifica-
tion and verification of such dynamic systems. We have
selected a software tool from the domain of configuration
for our study. Configuration wizards and tools are exam-
ples of software applications where even a small change
made by the user can lead to a very complex outcome. In
this paper, a configuration hierarchical model and a syn-
tax of propagation rules are introduced. These constructs
can be used to describe declaratively the dynamics that is
typical for software configuration tools. The hierarchical
model is then used for describing the internal dynamics
of the configuration tool Freeconf. This specific model
instance is then implemented in UPPAAL and verified
by the UPPAAL model-checker.

1 Introduction
Software applications become more and more complicated, nowa-
days. The complexity of the internal dynamics of a modern software
application can be hard to maintain. Software configuration is one
of the areas where the dynamics can become very complicated.

Software configuration can be divided into two distinct groups.
In literature, configuration is usually understood as finding such a
combination of software/hardware modules that the resulting prod-
uct satisfies some prescribed requirements [Vlaeminck et al., 2009].
On the other hand, from the point-of-view of the end-user, configu-
ration process means changing some options (configuration keys) of
a finished product, so that it will adapt to the user’s needs (chang-
ing the background of the desktop, choosing the size of the subti-
tles in the media-player, setting up permissions for the web server)
[Liaskos et al., 2005; Fabian, 2012]. Nowadays, there exist software
tools designed to aid the user with these application adjustments.
They often offer a GUI (Graphical User Interface) in a form of one
or more configuration windows and are usually hard-wired to the ap-
plication itself. There also exist general-purpose configuration tools
such as KConfigXT [TechBase, 2012], and Freeconf [Fabian, 2012].

Since there can be many possible configuration keys in a configu-
ration, it is natural to organize the keys into hierarchical categories.
Each key also has an inner state formed by some properties that de-
scribe it. When the user interacts with a configuration tool, some
configuration keys change their state in reaction to the user’s input.

Every change can be propagated further across the hierarchy and in-
duce more changes in other keys depending on the semantics of the
properties. In a configuration tool with many internal key properties,
the amount of property interactions can lead to a complex dynam-
ical behavior which is difficult to implement in an imperative style
programming language. However, it is straightforward to describe
the dynamics in a declarative form as propagation rules. The ele-
gance of this approach consists in condensing the description of the
dynamics (which can be very complex) to a single list of rules. That
list can be then (semi)automatically verified for its soundness and
completeness.

This topic is related to problems from the domain of produc-
tion rules and knowledge bases [Arman, 2013; Preece and Shinghal,
1994; Preece and Shinghal, 1992]. Some initial work has been done
to address the problem of automatic detection of rules redundancy
and inconsistency in [Lukichev, 2011]. In the paper, the author uses
description logic [Nardi and Brachman, 2003] to describe, in an ab-
stract and general way, some typical patterns which can lead to an
inconsistent or non-minimal set of production rules. The long-term
goal of our work, however, is to develop a usable software appli-
cation which would (semi)automatically verify the minimality and
consistency of hierarchical models that are used in software config-
uration tools.

In this paper, an attempt to model and verify configuration soft-
ware dynamics is introduced. A general model of a configuration
hierarchy is described together with declarative rules that are used
to model the dynamics on top of the hierarchy. Further, it is shown
on a specific instance of the model (which is used in Freeconf) how
such a set of rules can look like. Finally, the soundness of this in-
stance is studied and verified by using the model-checking utility
UPPAAL.

The rest of this paper is divided as follows. In Section 2, the hi-
erarchical model and propagation rules are presented. Section 3 de-
scribes the properties used in Freeconf and the specific set of rules
that describe the dynamics of properties propagation in it. Section 4
introduces UPPAAL, a model-checking software tool. In Section 5,
it is presented how the Freeconf propagation rules can be modeled
and their soundness verified in UPPAAL. Finally, Section 6 summa-
rizes the results and Section 7 concludes.

2 Hierarchical Model and Rules
In this section, a configuration hierarchical model and a syntax of
propagation rules will be introduced.

2.1 Hierarchical Model
The hierarchical configuration model can be thought as a rooted
acyclic graph where each node has an internal state. The state of

David Fabian, Radek Mařík 35

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

a node can be changed directly by the environment (i.e., the user)
or indirectly as a result of propagation of some direct change. The
internal state will be limited to only Boolean and bounded integer
properties in this paper.

Definition The internal state of a node in the hierarchical configu-
ration model is a tuple of sets (B, I,D), where Bi ∈ B represents
a Boolean property and Ij ∈ I represents an integer property from
a single bounded integer domain D. At least one of the sets B and
I must be non-empty.

Definition A node of a configuration hierarchical model is a tu-
ple (i, p, C,X), where i is a unique positive integer index, p is the
node’s parent index, C is a (possibly empty) set of indices of the
node’s successors in the graph, and X is the internal state of the
node. There exists a special parent index ∅ for the top-level node of
the hierarchy denoting the absence of a parent.

Because some properties in different nodes can have the same name,
a term Xi

j will be used henceforth to denote a property Xj of the
node with index i.

Definition A configuration hierarchical model M is a non-empty
set of nodes. A top-level node, i.e. the one with the parent index ∅
must always be present.

2.2 Propagation Rules
In general, the user can initiate a propagation by changing any prop-
erty of an arbitrary node in the hierarchy (even more properties at
once). From that, based on the semantics of the propagation, the
change can propagate within that node, further up to the node’s par-
ent, down to its successors, or does not have to propagate at all.

The dynamics can be formally described by propagation rules.

Definition A propagation rule has a form A → B, where A is
the head (condition) of the rule and B is the body (action). The
head is always bound to a specific node and consists of a non-empty
conjunction of the node’s Boolean properties or their negations and
terms Ij ~ vj , where IJ is the node’s integer property and vj is
an integer constant. ~ is a substitute for comparison operators <
,>,≤,≥,==, 6=. The body is formed by a non-empty conjunction
of assignments to, in general, Boolean and integer properties of the
node itself, to properties of the node’s parent and to properties of
its children. If the head of a propagation rule is satisfied (i.e. all
Boolean properties are true and all comparison operations hold) the
rule fires and the body is executed leading to a change of values of
other properties.

The terms "head" and "body" are used in this particular order to
match Constraint Handling Rules (CHR) terminology since there are
plans to use CHR to develop propagation rules solver (see Section
7).

A syntactical shortcut will be used to express Ij = Ij + 1 and
Ij = Ij−1, i.e., incrementing and decrementing an integer property
by one, as Ij++ and Ij--, respectively. According to the definition,
a general propagation rule that operates only within a single node
with index a will have the following form
(∧

i

Ba
i ∧

∧

m

(Iam ~ vm)

)
→
∧

j

(
Ba

j = bj
)
∧
∧

k

(Iak = ck) .

A propagation rule that represents a communication between a node
and its parent will be
(∧

i

Ba
i ∧

∧

m

(Iam ~ vm)

)
→
∧

j

(
Bp

j = bj
)
∧
∧

k

(Ipk = ck) .

Finally, a propagation rule that describes a communication between
a node and some of its children can be described as
(∧

i

Ba
i ∧

∧

m

(Iam ~ vm)

)
→
∧

j,l

(
B

Cl
j = bj

)
∧
∧

k,l

(
I
Cl
k = ck

)
.

1

2 3

Figure 1: An example of configuration hierarchical model
with three nodes.

To better illustrate how different types of propagation can look
like, let us consider a configuration hierarchical modelM with three
nodes as given in Figure 1. Each node will have an identical struc-
ture of the internal state X = (bool1, bool2, int1, {0, 1, 2}). The
model M will be a set of three tuples

M = {
(
1, ∅, {2, 3} ,

(
bool11, bool

1
2, int

1
1, {0, 1, 2}

))
,

(
2, 1, ∅,

(
bool21, bool

2
2, int

2
1, {0, 1, 2}

))
,

(
3, 1, ∅,

(
bool31, bool

3
2, int

3
1, {0, 1, 2}

))
} .

Let us further assume that the semantics of the properties declares
that:

• whenever bool1 is false for node two, bool2 must also be
false for that particular node

• whenever bool2 is true and int1 is greater than one in node
three, the value of the parent’s int1 must be two

• whenever int1 is zero for node one, bool2 for node two must
be true and int1 for node three must be one

The respective propagation rules are given below.

¬bool21 → bool22 = false

bool32 ∧ int31 > 1→ int11 = 2

int11 == 0→ bool22 = true ∧ int31 = 1

Of course, the body of a propagation rule can affect not only the
node itself, the parent, and the successors separately, but also any
combination of the respective internal states. In general case, poorly
designed rules can form a loop and thus lead to a non-terminating
computation.

3 Freeconf properties
In this section, Freeconf is briefly introduced and its internal dynam-
ics modeled as a configuration hierarchical model is presented.

3.1 Freeconf Tool
Freeconf is a general-purpose cross-platform configuration utility
developed at Czech Technical University [Fabian, 2011; Fabian,
2012]. The tool is supposed to create an intermediate layer be-
tween the user and an application without any configuration GUI.
An example of such applications can be various application servers,
web servers, some movie players, and basically any program that
stores its configuration in configuration text files. When requested
by the user, Freeconf automatically generates a configuration dialog

36 David Fabian, Radek Mařík

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

with application specific configuration options (configuration keys),
the user then can change the configuration according to her liking,
and during saving Freeconf transforms the output into the respec-
tive native configuration files from where the application can read
the changes. The details about this process can be found in [Fabian,
2012].

3.2 Key and Section Properties

property meaning
static mandatory
(sman)

If it is false, the key is never shown to
the user unless show all property is set.
If it is true the visibility is controlled
by the dynamic equivalent of this prop-
erty.

static active
(sact)

If it is false, the key is as being com-
mented out from the list of possible
keys. No further action is applicable
to the key and the key is not visible to
the user.

dynamic mandatory
(dman)

This property can only be set as a result
of propagation of the user’s action. If it
is true, the key is mandatory and must
be shown. This property has no mean-
ing when the static mandatory property
is set to false.

dynamic active
(dact)

This property can only be set as a result
of propagation of the user’s action. If
it is false, the key does not have sense
in the current settings. This property
has no meaning when the static active
property is set to false.

value set
(valset)

This property is true iff the key has a
value assigned. In some configuration,
there can be an initial state where the
key does not have any value.

default value set
(defvalset)

This property is true iff the key has a
default value assigned. There can be
some keys in the configuration which
do not have a default values assigned.

undefined
(undef)

This is an aggregation property which
is true iff the value and default values
are both unset.

inconsistent The key is inconsistent with the con-
figuration iff it is undefined and is dy-
namically mandatory and dynamically
active.

show all
(showall)

This is a special property which over-
rides whether the keys are shown to the
user or not. Every key will always have
the same value of this property because
the user will change it at once for all
the keys (broadcast change). If this
property is true all dynamically active
keys are shown to the user, even those
that are not mandatory.

Table 1: Freeconf key properties.

Freeconf can handle hundreds or even thousands of configuration
options. To avoid overfilled and confusing configuration dialogs, it
is necessary to divide the options into specific categories. It is done
by assigning a set of Boolean properties to every option such that
truthfulness of a specific set of properties means the option belongs

to the respective category. At the moment, Freeconf uses, apart from
the basic set of properties that are static and do not participate in
property propagation, a set of properties for every configuration key.
Static properties are meant to be fixed throughout the run of Freeconf
and cannot be changed by the user. Dynamic properties, on the other
hand, can have their values changed in reaction to the user’s action
quite often. Mandatory property reflects the fact that the key is vital
for the configuration and must be shown to the user at any case.
Activity of the key determines its current state of presence or absence
in the configuration. The key properties are given in Table 1.

Semantically related configuration keys are often grouped to-
gether to so called configuration sections. These are basically con-
tainers which can hold both other configuration sections or configu-
ration keys. The sections have themselves some properties that help
them to keep track of the state of their direct successors and react,
for example, to the situation where all successors of a given section
should be hidden. In that case, the section should hide itself too. The
current set of section properties is given in Table 2.

Freeconf has a semantics which describes the evolution of prop-
erties values in reaction to the users actions. It has been formulated
as a set of propagation rules in [Fabian et al., 2012].

In the context of Section 2, it is easy to encode Freeconf proper-
ties propagation into a configuration hierarchical model. There will
be two types of nodes in the model, one for configuration keys and
one for configuration sections. Following Definition 2.1, the inter-
nal state of a configuration key will be a tuple with nine Boolean
properties and no integer properties:

X = ({defvalset, valset, sman,
dman, sact, dact,

undef, inconsistent, showall},
∅,
∅) .

The internal state of a configuration section will be a tuple of two
Boolean properties and four integer properties:

Y = ({empty, inconsistent, showall},
{mancounter, actcounter,
inccounter, sectionshowncounter},
[0 . . . N]) ,

where N is the number of successors of the section. The configura-
tion hierarchy will be formed with configuration keys as leaf nodes
and configuration sections as non-leaf nodes.

3.3 Propagation Rules
The list of all propagation rules that describe the dynamics in
Freeconf is given in [Fabian et al., 2012] where the rules are rep-
resented using a rule-based constraint programming syntax [Brand,
2004]. A transformation to the propagation rules syntax is straight-
forward. For example, whenever dynamic mandatory property of a
node changes its value, the parent must be informed and its manda-
tory counter must be adjusted accordingly. Propagation rules de-
scribing this change are shown below.

dmani → mancounterpi ++
¬dmani → mancounterpi --

In Freeconf, rules rewrite only nodes that are higher up in the hierar-
chy, i.e., node to section and section to section communication. This
flow of information suffices for the needs of Freeconf and prevents
non-termination.

David Fabian, Radek Mařík 37

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

property meaning
mandatory counter
(mancounter)

This counter reflects the number
of key successors that are dynamic
mandatory.

active counter
(actcounter)

This counter reflects the number of
key successors that are dynamic ac-
tive.

inconsistent counter
(inccounter)

This counter reflects the number of
successors (even sections) that are in-
consistent.

section shown counter
(sectionshowncounter)

This counter holds the number of suc-
cessor sections that are not empty.

empty This property is true iff there are no
mandatory and active key successors
and no non-empty successor sections.

inconsistent This property is true if there is at least
one inconsistent successor. In another
words, the inconsistent counter is not
zero.

show all
(showall)

The same property as in the case of
the keys. The user will change the
value for every section and every key
at once overriding the emptiness of
the section.

Table 2: Freeconf section properties.

4 UPPAAL
UPPAAL is a model-checking verification software of real-time dy-
namic systems developed by Upsalla University and Aalborg Uni-
versity [Behrmann et al., 2004; David et al., 2009]. A modeled sys-
tem is represented as a network of timed automata and one can verify
the soundness of the model by querying the built-in model checker.

4.1 Modeling in UPPAAL
UPPAAL offers a GUI written in Java to design each automaton of
the network graphically. One can also program parts of the automata
using a C-like syntax language. A very useful feature is templat-
ing which simplifies designing of very similar automata by using
constant template parameters. UPPAAL will automatically unfold
a template by creating an automaton according to the template for
every possible value of the template parameter.

UPPAAL further supports adding guards to transitions, time in-
variants to nodes, choosing non-deterministically a value of a vari-
able during a transition, and a synchronization of two or more con-
current transitions via signals. An example of a modeled automaton
template can be seen in Fig.2.

UPPAAL offers declaration of constants, typed variables and
single-dimensional and multi-dimensional arrays. A variable can
be either Boolean, or a bounded integer (in fact, Boolean is a special
case of int[0,1]). The scope of a variable is either local to the
automaton, or is global, so all parts of the model can access the vari-
able. In Fig. 2, the variable sm is Boolean and its value is chosen
randomly upon transition from the Initial state to the Start
state. During that same transition, the value of sm is assigned to
the cell of array sman with index id. The variable id is in fact
a template parameter and its value is different yet constant in every
instance of this template.

4.2 Query Language
The main purpose of a model-checker is to verify the model w.r.t.
a requirement specification [Behrmann et al., 2004]. The require-
ments must be formulated in a well-defined language. UPPAAL

Figure 2: A state machine automaton template designed in
UPPAAL.

modality meaning
E <> ϕ There exists a run in which ϕ eventually holds.
A <> ϕ In every run, ϕ eventually holds.
E[]ϕ There exists a run in which ϕ always holds.
A[]ϕ In every run, ϕ always holds.

Table 3: Modalities used in UPPAAL.

uses a simplified version of timed computation tree logic (TCTL)
[Alur et al., 1993].

E <> forall(i : id_s)manCounter[i] < 0 (1)

An example of a query is given in Equation 1. The query usually
starts with a path quantifier and a modality determining the validity
of a formula along a specific run of the system. All possible modal-
ities are presented in the following table.

Apart from the modalities stated above, UPPAAL also supports
the until modality ϕ --> ψ which can be read as "In every run, if ϕ
holds then ψ eventually holds". The same formula can be obtained
by using only the modalities from Table 3 A[](ϕ => (A <> ψ)).
UPPAAL however does not support multiple modalities in a single
query, so --> is the only possibility.

The model-checker in UPPAAL is written in C and it is possible
to choose different sub-algorithms it uses during the verification via
the program’s menu. If the verification of a query fails, UPPAAL
can be set to produce a counter-example in the form of a system
trace. The trace demonstrates how to get from the initial state to a
state where the query does not hold.

5 Modeling of Rules Using UPPAAL
Since the hierarchical configuration model can become quite large
and there can exist a lot of propagation rules, it would be profitable
to have a means of verification that the rules express the intended
semantics correctly, are consistent, and not redundant. The hierar-
chical model can be thought of as a Kripke structure where each
instance of the model forms a possible world and propagation rules
describe possible transitions. Since UPPAAL in its core uses Kripke
structures, it is natural to model the configuration hierarchical model
in UPPAAL.

As the first attempt, the Freeconf model was verified in UP-
PAAL. The entire Freeconf specific configuration hierarchical model
was encoded into UPPAAL and then the model-checker was used
to perform the verification. In the following sub-sections, each
of the steps will be briefly described. The entire model and all

38 David Fabian, Radek Mařík

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Figure 3: Freeconf section node modeled in UPPAAL.

queries can be found at http://kmlinux.fjfi.cvut.cz/
~fabiadav/phd/uppaal/freeconf_model.zip.

5.1 Modeling Phase
There are multiple problems to be solved while modeling the hierar-
chy. Firstly, Freeconf key and section properties forming the internal
states of Freeconf nodes have to be inserted. As shown in Listing 1,
they are declared as global Boolean and integer arrays in a straight-
forward way, where each node of the hierarchical model is assigned
a non-negative index and accessing the internal state of the node is
simply done by reading elements from all the arrays with the same
index. Even though in Freeconf, integer counters generally do not
have the same domains, it is acceptable to approximate the general
situation by setting the upper limit of each counter to the number of
nodes in the hierarchy (to the number of sections in the hierarchy
for sectionShownCounter). Property show all is implemented as a
single shared Boolean variable for the user template to be able to
change the property at once.

const int N = 3; // number of keys
const int M = 2; // number of sections

bool defvalset[N], valset[N], sman[N],
dman[N], sact[N], dact[N], undef[N],
inconsistent[N];

int[0, N] incCounter[M], manCounter[M],
actCounter[M];

int[0, M] sectionShownCounter[M];
bool empty[M];
bool showAll;

Listing 1: Declaration of Freeconf properties

The hierarchical nodes are encoded as state machine automaton tem-
plates parametrized by node indices. For each key, there exists an
automaton Node which was presented earlier in Figure 2. The au-
tomaton has two main tasks to perform — setting the initial state of
all its properties to random values (so that the model-checker can
later test all possible combinations of properties values) and updat-
ing the visibility in the case when the user has modified the show all

property. For each section, there is an automaton Section given
in Figure 3.

The section template merely listens to signals from its successors
and updates its respective counters and the emptiness status.

The most complicated part deals with the design of the hierar-
chical model. Since channel synchronization and global variables
are the only possibilities to exchange information between the au-
tomata in UPPAAL, properties propagation is implemented by us-
ing these two. Two separate tree connections have to be considered
because they behave differently. For section-key connections (that
is to model the propagation between the keys and their parent sec-
tions), a special automaton template NodeSectionDispatcher
is created. For section-section connections (i.e., for modeling
the propagation between the sections and their parent sections),
another automaton template SectionDispatcher is created.
NodeSectionDispatcher template is parametrized by an in-
dex which spawns from zero to the number of section-key pairs.
SectionDispatcher template is similarly parametrized by an
index going from zero to the number of section-section pairs (includ-
ing the top-level pair whose one end is connected the top- level sec-
tion and the other to TopLevelTerminator automaton). Two
global two-dimensional arrays are declared which, in fact, model
the hierarchical tree as a parent-child relation for node indices.

const int NODECON = 3;
const int SECTIONCON = 2;
const int[0, N] disIdx[NODECON][2] =

{{0, 0}, {1, 0}, {2, 1}};
const int[0, M] disSecIdx[SECTIONCON][2] =

{{0, 1}, {1, 2}};

Listing 2: Hierarchical tree modeled as two two-dimensional
arrays

Array disIdx has key indices in its first dimension and their
parent section indices in its second dimension. Thus, in the example
above key zero has section zero as its parent, key one has section
zero, etc. Array disSecIdx is the equivalent of disIdx array
but this time it describes section relationship. Note that in the ini-
tialization of disSecIdx, constant two is used even though in this
case, only two sections are present in the example model, and hence

David Fabian, Radek Mařík 39

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Figure 4: Propagation rules modifying the property undefined modeled as a state machine.

the index should be invalid. The first index that is not a valid sec-
tion index is, however, used to denote the top-level connection and
is thus valid in this context.

Constants NODECON and SECTIONCON represent the number
of section-key connections and section-section connections, respec-
tively. These arrays are used by the dispatcher automata to automat-
ically dispatch propagation signals across the tree. This settings is
flexible in the way that changing the shape of the hierarchy is simply
a matter of adjusting four constants and two arrays.

While the tree structure can be abstracted and generalized to allow
easy modifications, the actual rules have to be hard-wired into the
automata templates because the semantics behind those rules must
be expressed in a visual form. For example, the automaton presented
in Figure 4 models the behavior of propagation rules that modify
undefined property.

Enforcing causality of the propagation turns out to be another
complication. For example, the initialization phase, where the keys
are assigned some initial values and the first step of the propagation
fires, must come before the user is activated. Enforcing causality
does not require to use clocks that are the integral part of UPPAAL,
only auxiliary variables and synchronization channels suffice. On
the other hand, since automata execution is by default parallel in UP-
PAAL, the auxiliary code that controls causality renders the model
more complicated and less clear.

Finally, the user is modeled as a single state machine automaton.
The automaton non-deterministically chooses a key in the hierarchy
and one of its properties that is changeable at the current state. In
order to avoid race-conditions, every user’s action must lock the hi-
erarchy until the propagation has been finished. A global variable
propagationInProgress is used for this purpose.

5.2 Verification Phase
Of course, since Freeconf model can become arbitrarily large by
adding more sections and keys to the model, only a small amount
of actual instances of the general Freeconf model is verified by the
exemplar UPPAAL model. The instances are given in Figure 5.
In reality, Freeconf can easily have four or five levels of sections
in the hierarchy since there exist auxiliary non-visible sections and
window tabs that act as sections in the model. On the other hand,
Freeconf model is somehow homogeneous which means that if node
to section and section to section properties propagation is valid than
Freeconf model with arbitrarily large tree should be also valid.

Model-checking queries are divided into several groups. The first
group serves a purpose of testing the UPPAAL model itself, because
the encoding of the problem is not very straightforward and often

(a) (b) (c)

Figure 5: Freeconf hierarchical models validated in UP-
PAAL. Sections are depicted as gray, keys are white.

leads to cycles and non-termination. The basic liveness checking
query E <> deadlock appears to be very useful.

When the model is ready, it is necessary to further test whether
updates to the integer properties do not set any value out of the do-
main. Queries similar to the one in the following listing are used for
this test for every counter.

E <> forall(i : ids) actCounter[i] > N

E <> forall(i : ids) actCounter[i] < 0

Of course, just in this situation, the domains of the respective coun-
ters are changed to [−1, N + 1] or [−1,M + 1]. Other basic type
checking was also done.

In [Fabian et al., 2012], one of the open problems was to deter-
mine if the following two sets of propagation rules that are given
in Equation 2 and 3 are complementary and if one can replace the
rule heads in the second set by just the negation of the heads from
the first set. These two rules affect the state of the section emptiness
property. They have got non-symmetric heads as a result of iterative
development of Freeconf.

emptyii ∧
(
sectionshowncounterii > 0

)
→ ϕ

showallii ∧
(
activeshowni

i > 0
)
→ ϕ

¬showallii ∧
(
activeshowni

i > 0
)
∧

∧
(
mandatoryshowncounterii > 0

)
→ ϕ

ϕ :=
(
emptyii = false ∧ (sectionshowncounterpi −−)

)

(2)

40 David Fabian, Radek Mařík

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

¬emptyii ∧
(
mandatoryshowncounterii == 0

)
∧

∧
(
sectionshowncounterii == 0

)
→ ϕ′

(
activeshowncounterii == 0

)
∧

∧
(
sectionshowncounterii == 0

)
→ ϕ′

ϕ′ :=
(
emptyii = true ∧ (sectionshowncounterpi ++)

)

(3)

By using a query (and its derivation with negated outer conjuncts)
which are given in Equation 4, it can be shown that the rule sets
are not complementary and there exist situations where both rules
are applicable. To solve this error in the model, one has to modify
the rule head in the second set by adding ¬showalli as is shown
in Equation 5. After this minor tweak, the rules behave correctly
and the emptiness property is set correctly in all situations with the
existing code in Freeconf.

E <> forall(i : ids)(sectionShownCounter[i]||
||(showAll&&actCounter[i])||
||(!showAll&&actCounter[i]&&manCounter[i]))&&

&&((!manCounter[i]&&!sectionShownCounter[i]

&&!showAll)||(!sectionShownCounter[i]&&

&&!actCounter[i]))

(4)

¬emptyii ∧
(
mandatoryshowncounterii == 0

)
∧

∧
(
sectionshowncounterii == 0

)
∧ ¬showallii → ϕ′

(
activeshowncounterii == 0

)
∧

∧
(
sectionshowncounterii == 0

)
→ ϕ′

(5)

One of the hardest part is to construct a query that would allow us
to ask for the correctness of propagation of the node and section
inconsistency property. The final query which is shown below in
Equation 6 must use UPPAAL node names and the until operator to
be able to express the property update dynamics. Since UPPAAL
does not allow universal quantification with the until operator, it is
not possible to create a general query for every node.

(empty[0]&&empty[1]&&dman[0]&&dact[0]&&

Inconsistent(0).SetInconsistentTrue)

-->(!empty[0]&&!empty[1]&&

TopLevelTerminator.TerminationDone)

(6)

5.3 UPPAAL Model-checker Performance
Because UPPAAL model is parametrized so that it can be very easily
modified to represent a different instance of Freeconf model, it is
interesting to measure UPPAAL’s model-checker performance with
respect to the size of Freeconf model. A fixed query 7 which tests
the correctness of the node inconsistency property modifications is
used for the needs of this measurement. The query uses "for all"
path quantifier A and "always" temporal modality [], so UPPAAL
would have to traverse a great amount of states to draw a conclusion.

A[]forall(i : idk)(undef [i]&&dman[i]&&dact[i]&&

&&!propagationInProgress&&!userAction&&

&&initF inished) imply (inconsistent[i])

(7)

In Table 4, the time and consumed memory it took to finish the
validation process of the query for the three Freeconf models which

Model Time (s) Memory (KiB) # of states
a 0.07 6889 16384
b 1.67 24572 21233664
c 189.1 2147932 17592186044416

Table 4: Performance statistics of UPPAAL model-checker
with respect to the size of Freeconf model.

were introduced in Figure 5 is given together with the upper esti-
mate on the number of states UPPAAL has to traverse. The test was
performed on a desktop PC with Intel Core 2 Quad Q9550 CPU at
2.83 GHz, 4 GiB RAM, running 64 bit Linux 3.1.10 and a develop-
ment snapshot of UPPAAL 4.1.14.

6 Results
The entire Freeconf model has been encoded in UPPAAL. Some
of the parts of the hierarchical configuration model, like the tree
structure, are easy to implement in UPPAAL, others, like propaga-
tion rules, are more problematic and sometimes require a substantial
amount of auxiliary coding/modeling to be able to express certain
features of the hierarchical model, e.g. causality. On the other hand,
UPPAAL offers extra constructs like global and local clocks and
time invariants that are not needed for modeling of a hierarchical
configuration model.

As can be seen in Table 4, there is an exponential explosion in
the number of states in the Freeconf model. The UPPAAL model-
checker can handle a large number of states but even for a small
Freeconf model like the one presented in Figure 5c, it already con-
sumes over two gigabytes of memory to finish verification of a sin-
gle query. Using UPPAAL to verify other (possibly) heterogeneous
configuration hierarchical models would be problematic. UPPAAL
also does not provide a simple way of storing a result of verifica-
tion (the only report on the overall state of verification is a green
or red light next to each query). When one has a functioning and
verified model and adds or modifies some aspect of it, one would
like to re-verify the model and get all differences in the verification
results. One would also like to automatize verification by having a
verified reference instance of the model for comparison. None of
this is supported in UPPAAL as of yet.

7 Conclusion & Future Works
In this paper, the first step towards a (semi)automatic mechanism
of dynamic rules verification has been made. A configuration hier-
archical model has been defined and a syntax of propagation rules
has been described. The dynamics of evolution of various prop-
erties of configuration keys in the configuration tool Freeconf has
been briefly introduced as an instance of the general hierarchical
model. This Freeconf model instance has been further encoded as a
set of state machine automata templates in UPPAAL. The UPPAAL
model-checker has been used to verify certain shapes of the Freeconf
model.

In the future, a custom domain specific model-checker should be
written which would utilize the knowledge of the hierarchical con-
figuration model and the propagation rules and would allow to ex-
press a specific problem with minimum overhead. All propagation
rules describing the dynamics of the problem should be held at one
place for maximum readability. The model-checker should also be
able to re-verify the model in the case of an update of the rules. The
intention at the moment is to use CHR (Constraint Handling Rules)
[Frühwirth, 2009; Frühwirth and Raiser, 2011] as a base program-
ming language for the model-checker implementation.

David Fabian, Radek Mařík 41

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

8 Acknowledgments
This work was partially supported by the project of the Student
Grant Agency of the Czech Technical University in Prague No.
SGS11/161/OHK4/3T/14, 2011-13.

References
[Alur et al., 1993] Rajeev Alur, Costas Courcoubetis, and David

Dill. Model-checking in dense real-time. Information and Com-
putation, 104:2–34, 1993.

[Arman, 2013] Nabil Arman. Improving rule base quality to en-
hance production systems performance. International Journal of
Intelligence Science, 3(1):1–4, 2013.

[Behrmann et al., 2004] Gerd Behrmann, Re David, and Kim G.
Larsen. A Tutorial on Uppaal. pages 200–236. Springer, 2004.

[Brand, 2004] Sebastian Brand. Rule-Based Constraint Propaga-
tion Theory and Applications. PhD thesis, Universiteit van Ams-
terdam, 2004.

[David et al., 2009] Alexandre David, Tobias Amnellough, and
Martin Stiggeore. Uppaal 4.0: Small Tutorial, 2009.

[Fabian et al., 2012] David Fabian, Radek Mařík, and Tomáš Ober-
huber. Towards a formalism of configuration properties propaga-
tion. In ConfWS’12, pages 15–20. CEUR Workshop Proceedings,
2012.

[Fabian, 2011] David Fabian. System for Simplified Generating of
Configurations. Master thesis, Faculty of Nuclear Sciences and
Physical Engineering, Prague, 2011. in Czech.

[Fabian, 2012] David Fabian. Freeconf: A general-purpose multi-
platform configuration utility. In Doktorandské dny 2012, pages
21–30. ČVUT v Praze, 2012.

[Frühwirth and Raiser, 2011] Thom Frühwirth and Frank Raiser.
Constraint Handling Rules: Compilation, Execution, and Analy-
sis. Books on Demand, 2011.

[Frühwirth, 2009] Thom Frühwirth. Constraint Handling Rules.
Cambridge University Press, 2009.

[Liaskos et al., 2005] Sotirios Liaskos, Alexei Lapouchnian, Yiqiao
Wang, Yijun Yu, and Steve Easterbrook. Configuring common
personal software: a requirements-driven approach. In Proceed-
ings of the 13th IEEE International Conference on Requirements
Engineering, RE ’05, pages 9–18, Washington, DC, USA, 2005.
IEEE Computer Society.

[Lukichev, 2011] Sergey Lukichev. Improving the quality of rule-
based applications using the declarative verification approach. In-
ternational Journal of Knowledge Engineering and Data Mining,
1(3):254–272, December 2011.

[Nardi and Brachman, 2003] Daniele Nardi and Ronald J. Brach-
man. The description logic handbook. chapter An introduction
to description logics, pages 1–40. Cambridge University Press,
New York, NY, USA, 2003.

[Preece and Shinghal, 1992] Alun D. Preece and Rajjan Shinghal.
Verifying expert systems: A logical framework and a practical
tool. Expert Systems with Applications, 5:421–436, 1992.

[Preece and Shinghal, 1994] Alun D. Preece and Rajjan Shinghal.
Foundation and application of knowledge base verification. Int J
Intell Syst 1994;9(8):683–702. Duftschmid, S. Miksch, 22:23–41,
1994.

[TechBase, 2012] KDE TechBase. Using KConfig XT.
http://techbase.kde.org/Development/
Tutorials/Using_KConfig_XT, 2012.

[Vlaeminck et al., 2009] Hanne Vlaeminck, Joost Vennekens, and
Marc Denecker. A logical framework for configuration software.
In Proceedings of the 11th ACM SIGPLAN conference on Princi-
ples and practice of declarative programming, PPDP ’09, pages
141–148, New York, NY, USA, 2009. ACM.

42 David Fabian, Radek Mařík

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Abstract
This paper deals with mass customization and the
association of the product configuration task with
the planning of its production process while trying to
minimize cost and cycle time. Our research aims at
producing methods and constraint based tools to
support this kind of difficult and constrained prob-
lem. In some previous works, we have considered an
approach that combines interactivity and optimiza-
tion issues and propose a new specific optimization
algorithm, CFB-EA (for constraint filtering based
evolutionary algorithm). This article concerns an
improvement of the optimization step for large prob-
lems. Previous experiments have highlighted that
CFB-EA is able to find quickly a good approxima-
tion of the Pareto Front. This led us to propose to
split the optimization step in two sub-steps. First, a
“rough” approximation of the Pareto Front is quickly
searched and proposed to the user. Then the user in-
dicates the area of the Pareto Front that he is inter-
ested in. The problem is filtered in order to restrain
the solution space and a second optimization step is
done only on the focused area. The goal of the arti-
cle is to compare thanks to various experimentations
the classical single step optimization with the two
sub-steps proposed approach.

1 Introduction
This article is about the concurrent optimization of product
configuration and production planning. Each problem is
considered as a constraint satisfaction problem (CSP) and
these two CSP problems are also linked with some con-
straints. In a previous paper [Pitiot et al., 2013], we have
shown that this allows to consider a two-step process: (i)
interactive configuration and planning, where non-
negotiable user requirements (product requirements and
production process requirements) are first processed thanks
to constraint filtering and reduce the solution space (ii) op-
timization of configuration and planning, where negotiable

requirements are then used to support the optimization of
both product and production process.
Given this problem, product performance, process cycle
time and process plus product cost can be optimized, we
therefore deal with a multi-criteria problem and our goal is
to propose to the user solutions belonging to the Pareto
front. For simplicity we only consider cycle time and total
cost (product cost plus process cost), consequently the two-
step process can be illustrated as shown in figure 1.

Figure 1 - Two-step process

Some experimental studies, reported last year [Pitiot et al.,
2012], discusses optimization performance according to
problem characteristics (mainly size and constraint level).
That last paper proposes to divide the step 2 (Pareto front
computation) in two tasks, particularly in the case of large
problems: (i) a first rough computation that permit to have a
global idea of possible compromises (ii) a second computa-
tion on a restricted area that is selected by the user. The goal
of this article is to present experimental results that show
that this idea allows to significantly reducing optimization
duration while improving optimization quality.
In this introduction, we clarify with a very simple example
what we mean by concurrent configuration and planning
problem and relevant optimization needs. Then the second
section formalizes the optimization problem, presents the
optimization algorithm and describes the experimental
study. The third section is dedicated to various experimenta-
tions.

Improving configuration and planning optimization:
Towards a two tasks approach

Paul Pitiot1,2, Michel Aldanondo1, Elise Vareilles1, Thierry Coudert3, Paul Gaborit1
1University Toulouse – Mines Albi, France

2 3IL-CCI Rodez, France
3University Toulouse – INP-ENI Tarbes, France

Paul.pitiot@mines-albi.fr

Paul Pitiot, Michel Aldanondo, Élise Vareilles, Thierry Coudert, Paul Gaborit 43

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

1.1 Configuration and planning processes.

Many authors, since [Mittal and Frayman, 1989], [Soininen
et al., 1998] or [Aldanondo et al., 2008] have defined con-
figuration as the task of deriving the definition of a specific
or customized product (through a set of properties, sub-
assemblies or bill of materials, etc…) from a generic prod-
uct or a product family, while taking into account specific
customer requirements. Some authors, like [Schierholt
2001], [Bartak et al., 2010] or [Zhang et al. 2013] have
shown that the same kind of reasoning process can be con-
sidered for production process planning. They therefore
consider that deriving a specific production plan (opera-
tions, resources to be used, etc...) from some kind of generic
process plan while respecting product characteristics and
customer requirements, can define production planning.
Many configuration and planning studies (see for example
[Junker, 2006] or [Laborie, 2003]) have shown that each
problem could be successfully considered as a constraint
satisfaction problem (CSP). We proposed to associate them
in a single CSP in order to process them concurrently.
This concurrent process and the supporting constraint
framework present three main interests. First they allow
considering constraints that links configuration and planning
in both directions (for example: a luxury product finish re-
quires additional manufacturing time or a given assembly
duration forbids the use of a particular kind of component).
Secondly they allow processing planning requirements even
if product configuration is not completely defined, and
therefore avoid the traditional sequence: configure product
then plan its production. Thirdly, CSP fit very well on one
side, interactive process thanks to constraint filtering tech-
niques, and on the other side, optimization thanks to various
problem-solving techniques. However, we assume infinite
capacity planning and consider that production is launched
according to each customer order and production capacity is
adapted accordingly.
In order to illustrate the problem to solve we recall the very
simple example, proposed in [Pitiot et al., 2012], dealing
with the configuration and planning of a small plane. The
constraint model is shown in figure 2. The plane is defined
by two product variables: number of seats (Seats, possible
values 4 or 6) and flight range (Range, possible values 600
or 900 kms). A configuration constraint Cc1 forbids a plane
with 4 seats and a range of 600 kms. The production process
contains two operations: sourcing and assembling. (noted
Sourc and Assem). Each operation is described by two pro-
cess variables: resource and duration: for sourcing, the re-
source (R-Sourc, possible resources “Fast-S” and “Slow-S”)
and duration (D-Sourc, possible values 2, 3, 4, 6 weeks), for
assembling, the resource (R-Assem, possible resources
“Quic-A” and “Norm-A”) and duration (D-Assem, possible
values 4, 5, 6, 7 weeks).

Two process constraints linking product and process varia-
bles modulate configuration and planning possibilities: one

linking seats with sourcing, Cp1 (Seat, R-Sourc, D-Sourc),
and a second one linking range with the assembling, Cp2
(Range, R-Assem, D-Assem). The allowed combinations of
each constraint are shown in the 3 tables of figure 2 and lead
to 12 solutions for both product and production process.

Figure 2 - Concurrent configuration and planning CSP model

1.2 Optimization needs

With respect to the previous problem, once the customer or
the user has provided his non-negotiable requirements, he is
frequently interested in knowing what he can get in terms of
price and delivery dates (performance is not considered any
more). Consequently, the previous model must be updated
with some variables and numerical constraints in order to
compute the two criteria. The cycle time matches the ending
date of the last production operation of the configured prod-
uct. Cost is the sum of the product cost and process cost.

Figure 3 - CSP model to optimize

The model of figure 2 is completed in figure 3. For cost,
each product variable and each process operation is associ-
ated with a cost parameter and a relevant cost constraint: (C-
Seats, Cs1), (C-Range, Cs2), (C-Sourc, Cs3) and (C-Assem,
cs4) detailed in the tables of figure 3.
The total cost and cycle time are obtained with a numerical
constraint as follows:
Total cost = C-Seats + C-Range + C-Sourc + C-Assem.
Cycle time = D-Sourc + D-Assem

44 Paul Pitiot, Michel Aldanondo, Élise Vareilles, Thierry Coudert, Paul Gaborit

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

The twelve previous solutions are shown on the figure 4
with the Pareto front gathering the optimal ones. The goal of
this article is to improve the computation of this Pareto front
with respect to the user preference.

Figure 4 – Problem solutions and Pareto front

2 Optimization problem and techniques

The optimization problem is first defined, and then the op-
timization algorithm that will be used is described. Finally,
the experimental process is introduced.

2.1 Optimization problem

The optimization problem can be generalized as the one
shown in figure 5.

Figure 5 – Constrained optimization problem

The constrained optimization problem (O-CSP) is defined
by the quadruplet <V, D, C, f > where V is the set of deci-
sion variables, D the set of domains linked to the variables
of V, C the set of constraints on variables of V and f the
multi-valued fitness function. The set V gathers: the product
variables and the resource process variables (we assume that
duration process variables are deduced from product and
resource). The set C gathers: only configuration constraints
(Cc) and process constraints (Cp). The variables operation
durations and cycle time are linked with a numerical con-
straint that does not impact solution definition and therefore
does not belong to V and C. The same applies to the prod-
uct/process cost variables and total cost, which are linked
with cost constraints (Cs) and total cost constraints. The
filtering system allows dynamically updating the domain of
all these variables with respect to the constraints. The varia-
bles belonging to V are all symbolic or at least discrete. Du-
ration and cost variables are numerical and continuous.
Therefore, constraints are discrete (Cc), numerical (cycle
time and total cost) or mixed (Cp and Cs). Discrete con-
straints filtering is processed using a conventional arc con-
sistency technique [Bessiere, 2006] while numerical con-
straints are processed using bound consistency [Lhomme,
1993].

2.2 Optimization algorithm

A strong specificity of this kind of optimization problem is
that the solution space is large. [Amilhastre et al, 2002] re-
port that a configuration solution space of more than
1.4*1012 is required for a car-configuration problem. When
planning is added, the combinatorial structure can become
huge. Another specificity lies in the fact that the shape of
the solution space is not continuous and, in most cases,
shows many singularities. Furthermore, the multi-criteria
problem and the need for Pareto optimal results are also
strong problem expectations. These points explain why most
of the articles published on this subject, as for example
[Hong et al., 2010] or [Li et al., 2006] consider genetic or
evolutionary approaches to deal with this problem. In this
article we will use “CFB-EA” (for Constraint Filtering
Based Evolutionary Algorithm) a promising algorithm that
we have designed specifically for this problem.
CFB-EA is based on the SPEA2 method [Zitzler et al.,
2001] which is one of the most useful Pareto-based meth-
ods. It’s based on the preservation of a selection of best so-
lutions in a separate archive. It includes a performing evalu-
ation strategy that brings a well-balanced population density
on each area of the search space, and it uses an archive trun-
cation process that preserves boundary solution. It ensures
both a good convergence speed and a fair preservation of
solutions diversity.
To deal with constrained problems, we completed this
method with specific evolutionary operators (initialization,
uniform mutation and uniform crossover) that preserve fea-
sibility of generated solutions.

Paul Pitiot, Michel Aldanondo, Élise Vareilles, Thierry Coudert, Paul Gaborit 45

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

This provides the six steps following approach:
1. Initialization of individual set that respect the con-

straints (thanks to filtering),
2. Fitness assignment (balance of Pareto dominance and

solution density)
3. Individuals selection and archive update
4. Stopping criterion test
5. Individuals selection for crossover and mutation opera-

tors (binary tournaments)
6. Individuals crossover and mutation that respect the con-

straints (thanks to filtering)
7. Return to step 2.

For initialization, crossover and mutation operators, each
time an individual is created or modified, every gene (deci-
sion variable of V) is randomly instantiated into its current
domain. To avoid the generation of unfeasible individuals,
the domain of every remaining gene is updated by constraint
filtering. As filtering is not full proof, inconsistent individu-
als can be generated. In this case a limited backtrack process
is launched to solve the problem. This approach doesn’t
need any additional parameter tuning for constraint han-
dling. In the following, we will briefly remind the principles
and operators used in CFB-EA.
Many research studies try to integrate constraints in EA. C.
Coello Coello proposes a synthetic overview in [Mezura-
Montes and Coello Coello 2011]. The current tendencies in
the resolution of constrained optimization problem using
EAs are penalty functions, stochastic ranking, ε-constrained,
multi-objective concepts, feasibility rules and special opera-
tors. CFB-EA belongs to this last family.
The special operators class gathers methods that try to deal
only with feasible individuals like repairing methods,
preservation of feasibility methods or operator that move
solutions within a specific region of interest within the
search space as for example the boundaries of the feasible
region. Generally and has we verified on our last experi-
mentations, these methods are known to be performing on
non-over-constrained problems (i.e. a feasible solution can
be obtained in a reasonable amount of time to be able to
generate a population of solutions).
CFB-EA aims at preserving the feasibility of the individuals
during their construction or modification. Proposed specific
evolutionary operators prune search space using constraint
filtering. The main difference between our approach and
others is that we do not have any infeasible solution in our
population or archive. Each time we modify an individual,
the constraints filtering system is used in order to verify
consistency preservation of individuals.
Previous experimentations [Pitiot et al., 2012] allowed us to
verify that the exact approaches are limited to problems of
limited size and that CFB-EA is completely competitive for
the level of constraint of the models which interest us. In
this article, we propose a new two sub-step optimization
approach that takes advantage of the three following charac-
teristics: (i) EA are anytime algorithms, e.g. they can supply
a set of solutions (Pareto Front) at any time after initializa-

tion, (ii) we have an user who can possibly refine his criteria
requirements with regard to the solutions obtained during
optimization process ; (iii) CFB-EA is relevant for the range
of concurrent configuration and planning problems required
(size and constraints level) and more particularly it can pro-
pose, in a reasonable amount of time, a good approximation
of the Pareto Front that allows the user to decide about his
own cost/cycle time compromise.

2.3 Two-task optimization approach.

As explained in the introduction, the goal of this article is to
evaluate, for large problem, the interest of replacing the
single shot Pareto front computation by two successive
tasks: (i) a first rough computation that provides a global
idea of possible compromises (ii) a second computation on a
restricted area selected by the user.
This is shown in the illustration of figure 6. The left part of
figure 6 shows a single shot Pareto. The right part of figure
6 shows a rough Pareto quickly obtained (first task), fol-
lowed by a zoom selected by the user (max cost and max
time) and a second Pareto computation only on this restrict-
ed area (second task). The restricted area is obtained by con-
straining the two criteria total cost and cycle time (or inter-
esting area) and filtering these reductions on the whole
problem.

Figure 6 – Single shot and two-task optimization principles

The second optimization task does not restart from scratch.
It benefits from the individuals of the archive that belongs to
the restrained area founded during first task. We thus re-
placed the initialization of our CFB-EA (constitution of the
first population) by a selection of a set of the best solutions
obtained during the first rough optimization.
This provides the following process:
1. Interactive configuration and planning using non-
negotiable requirements of the user (as before),
2.1 - 1st global optimization task on negotiable requirements
of the user
2.2 - 2nd optimization on interesting area initialized with
individuals of the previous step.

Total cost

Cycle time

Single shot
Pareto

Total cost

Cycle time

Rough 1rst Pareto

2nd Pareto on
restricted area

max cost

max time

46 Paul Pitiot, Michel Aldanondo, Élise Vareilles, Thierry Coudert, Paul Gaborit

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

3 Experimentations

3.1 Model used and performance measure

The goal of the proposed experiments is to compare these
two optimization approaches (single-shot and two-task op-
timization approaches) in terms of result quality and compu-
tation time. In terms of quality we want to compare the two
fronts and will use the Hypervolume measurement proposed
by [Zitzler and Thiele 1998] which is illustrated in figure 7.
It measures the hypervolume of the space dominated by a
set of solutions. It thus allows evaluating both convergence
and diversity proprieties (the fittest and most diversified set
of solutions is the one that maximizes hypervolume). In
terms of computation time, we want to evaluate, for a given
Hypervolume result the time reduction provided by the se-
cond approach.

Figure 7 – Hyper volume definition

In terms of problem size, we consider a model called “full_
aircraft” that gathers 92 variables (symbolic, integer or float
variables) linked by 67 constraints (compatibility tables,
equations or inequalities). Among these variables, we find
21 decision variables that will be manipulated by the opti-
mization algorithms (chromosome in EAs):
- 12 variables (each with 6 possible discrete values) that

describe product customization possibilities,
- 9 variables (each with 9 possible discrete values) that

describe production process possibilities. In fact, the
nine values aggregate 3 resource types and 3 resource
quantities for each of the 9 process operations that
compose the production process.

Without any constraints, this provides a number of possible
combinations around 1018 (≈ 612 x 99). An average constraint
level (around 93% of solutions rejected) allows 7.3*1016
feasible solutions. Results of experimentation’s with other
model sizes and other constraint levels can be consulted in
[Pitiot et al., 2012].

Figure 8 shows the Pareto Fronts obtained with CFB-EA
after 3 and 24 hours of computation. The rough Pareto front
obtained after 3 hours of computation allows the user to
decide in which area he is interested in. In the next sub-
section, we will study a division of this Pareto front in three
restricted area:

- Aircraft_zoom_1: area that correspond to solutions with
a cycle time less than 410 (solutions with shortest cycle
times),

- Aircraft_zoom_2: area that correspond to solutions with
a cycle time less than 470 and a total cost less than 535
(compromise solutions),

- Aircraft_zoom_3: area that correspond to solutions with
a total cost less than 475 (solutions with lowest total
costs).

Figure 8 –Pareto-fronts obtained on “full aircraft model” after 3
and 24 hours of computation

These three areas correspond with a division of the final
Pareto front obtained after 24h of computation in three equal
parts. These areas have been selected in order to evaluate
performance of the proposed two-task approach, but it also
corresponds with some classical preference of a user who
could wish: (i) a less expensive plane, (ii) a short cycle time,
(iii) a compromise between total cost and cycle time. We
will discuss this aspect in section 3.3.
The optimization algorithms were implemented in C++ pro-
gramming language and interacted with the filtering system
coded in Perl language. All tests were done using a laptop
computer powered by an Intel core i5 CPU (2.27 Ghz, only
one CPU core is used) and using 2.8 Go of ram.

3.2 Two-task approach evolutionary settings

For a first experimentation of the two-task approach, we use
classical evolutionary settings (e.g. the same evolutionary
settings used for the single-shot approach: Population size:
80, Archive size: 100, Individual Mutation Probability: 0.3,
Gene Mutation Probability: 0.2, Crossover Probability: 0.8).
The main difference with the single-shot approach is with
the backtrack limit (e.g. number of allowed backtrack in
mutation or crossover operator). This limit has been set to
100 in the one-shot approach and to 30 in the two-step ap-
proach.
Indeed in the two-step approach, it could be time consuming
to obtain a valid solution. For example with the single-shot
optimization, only 2.5% of filtered individuals were unfea-
sible and none of them were abandoned; while with the two-
task approach and a lower backtrack limit, around 7% of
filtered individuals were unfeasible and 0.3% of them were
abandoned. So a lower backtrack limit reduces the time
spend to try to repair unfeasible individuals.

Paul Pitiot, Michel Aldanondo, Élise Vareilles, Thierry Coudert, Paul Gaborit 47

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

The only other difference between single-shot CFB-EA and
two-task CFB-EA is the stopping criterion. While in single-
shot approach, we use a fix time limit (24hours), the two-
task approach uses a bcondition stopping test that stops ei-
ther if there is no HV improvement after 2 hours or after 12
hours of computation (that must be added to the three initial
hours for getting the rough Pareto Front).

3.3 Experimental results

The goal of this section is to evaluate the two-task optimiza-
tion on the three selected areas of figure 8 (zoom 1, zoom 2
and zoom3) with respect to the single-shot optimization.

First result illustrations

Figure 9 illustrates an example of the Pareto fronts that can
be obtained on the zoom 1 area :
- rough Pareto obtained after 3 hours (fig 9 squares),
- two-task, after 3+12 hours (fig 9 triangles),
- single-shot, stopped after 24 hours (fig 9 diamonds).

Figure 9 –Example of Pareto fronts obtained on zoom1

The Pareto Fronts obtained by the two approaches (single-
shot and two-task) are very close when the cycle is greater
than 355. For lower cycle times, the proposed two-task ap-
proach is a little better. However, these curves correspond
with a specific run. In order to derive stronger conclusions,
10 executions of the two approaches have been achieved for
each of the three zoom areas.

Detailed comparisons

Detailed experimental results achieved on the three zoom
areas are presented in figure 10 and table 1.
On each graph of figure, the vertical axis corresponds to the
hyper volume (average of ten runs) reach and horizontal one
is the time spent. At time 0, the single-shot optimization is
launched (dotted line). After 3 hours (10800 seconds):
- the single-shot keeps going on (dotted line),
- the two-task is launched (solid line).
The table provides numeric results for each zoom area. The
columns display the single-shot, two-task and % gap of:
- average final hypervolume,

- average % standard deviation of hypervolume
- average computation time,
- average % standard deviation of computation time,
- maximum value of hypervolume.

Figure 10 – Evolution of hypervolume

In terms of quality, the new proposed approach (two-task
optimization) allows to obtain a similar performance with
respect to single-shot one:
- 0.4% worse on zoom1
- 1% worse on zoom2
- 4% better on zoom3
but in around half of computing time:
- 13 h instead of 24h for on zoom1
- 13.5h instead of 24h for on zoom2
- 10.5h instead of 24h for on zoom 3.
Furthermore, this computing time includes the 2 hours of
computation without any hypervolume reduction before
stopping (stopping criterion of the two-task approach).

48 Paul Pitiot, Michel Aldanondo, Élise Vareilles, Thierry Coudert, Paul Gaborit

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

It can be seen on the figure10 that when the single-shot
CFB-EA has trouble to obtain a good Pareto Front during
the first three hours, the more the two-task CFB-EA is per-
forming. On zoom1 area, single-shot CFB-EA reaches rela-
tively quickly a near-final Pareto Front; while on zoom3
area, it reaches it very slowly.

Z
o
o
m
1

Singleshot

CFBEA
Twotask
CFBEA

gap in %

Average
Final HV

5849 5823 0.4

Average
HV RSD

3.8% 5.1%

Total
time

86400(24h) 47996 (≈13h) 44.6

Total
time
RSD

0 15%

Max HV 6043 6057 0.2

Z
o
o
m
2

Singleshot

CFBEA
Twotask
CFBEA

gap in %

Average

Final HV
1758 1740 1.

Average
HV RSD

2.1% 2.3%

Total
time

86400(24h) 48501 (≈13.5h) 44

Total
time
RSD

0 16%

Max HV 1795 1776 1

Z
o
o
m
3

Singleshot

CFBEA
Twotask
CFBEA

gap in %

Average
Final HV

1765 1844 4.4

Average
HV RSD

3.16% 0.07%

Total
time

86400(24h) 38185 (≈10.5h) 55.9

Total

time
RSD

0 26%

Max HV 1831 1845 0,7

Table 1. Comparison of the two approaches

4 Conclusions
The goal of this paper was to evaluate a new optimization
principle that can handle concurrent configuration and plan-
ning. First the background of concurrent configuration and
planning has been recalled with associated constrained
modeling elements. Then an initial optimization approach
(single-shot CFB-EA) was described followed by the two-
task approach object of this paper.
Instead of computing a Pareto Front on the whole solution
space, the key idea is: to compute quickly a rough Pareto

Front, to ask the user about an interesting area and, to
launch Pareto computation only on this area.
According to experimental results, in terms of computation
time, the new two-task approach allows a significant time
saving around half of the previous time needed by the sin-
gle-shot optimization approach. In terms of quality, Hyper-
volume computation are very close or even a little better in
some case.
Furthermore, these results have been obtained on a rather
large problem that contains around 1016/1017 solutions. With
smaller problems, the proposed approach should perform
much better. We are already working on a more extensive
test (different model size and different level of constraints)
as we did in [Pitiot et al., 2012]. Another key aspect that
needs to be study is to find a way to define the rough Pareto
computation time.

References

[Aldanondo et al., 2008] M. Aldanondo, E. Vareilles. Con-
figuration for mass customization: how to extend prod-
uct configuration towards requirements and process con-
figuration, Journal of Intelligent Manufacturing, vol. 19
n° 5, p. 521-535A (2008)

[Amilhastre et al, 2002] J. Amilhastre, H. Fargier, P. Mar-
quis, Consistency restoration and explanations in dynam-
ic csps - application to configuration, in: Artificial Intel-
ligence vol.135, 2002, pp. 199-234.

[Bartak et al., 2010] R. Barták, M. Salido, F. Rossi. Con-
straint satisfaction techniques in planning and schedul-
ing, in: Journal of Intelligent Manufacturing, vol. 21,
n°1, p. 5-15 (2010)

[Bessiere, 2006] C. Bessiere, Handbook of Constraint Pro-
gramming, Eds. Elsevier, chap. 3 Constraint propaga-
tion, 2006, pp. 29-70.

[Hong et al., 2010] G. Hong, D. Xue, Y. Tu,, Rapid identifi-
cation of the optimal product configuration and its pa-
rameters based on customer-centric product modeling
for one-of-a-kind production, in: Computers in Industry
Vol.61 n°3, 2010, pp. 270–279.

[Junker, 2006] U. Junker. Handbook of Constraint Pro-
gramming, Elsevier, chap. 24 Configuration, p. 835-875
(2006)

[Laborie, 2003] P. Laborie. Algorithms for propagating re-
source constraints in AI planning and scheduling: Exist-
ing approaches and new results, in: Artificial Intelli-
gence vol 143, 2003, pp 151-188.

[Lhomme, 1993] O. Lhomme. Consistency techniques for
numerical CSPs, in: proc. of IJCAI 1993, pp. 232-238.

[Li et al., 2006] L. Li, L. Chen, Z. Huang, Y. Zhong, Prod-
uct configuration optimization using a multiobjective
GA, in: I.J. of Adv. Manufacturing Technology vol. 30,
2006, pp. 20-29.

Paul Pitiot, Michel Aldanondo, Élise Vareilles, Thierry Coudert, Paul Gaborit 49

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

[Mezura-Montes and Coello Coello 2011] E. Mezura-
Montes, C. Coello Coello, Constraint-Handling in Na-
ture-Inspired Numerical Optimization: Past, Present and
Future, in: Swarm and Evolutionary Computation, Vol. 1
n°4, 2011, pp. 173-194

[Mittal and Frayman, 1989] S. Mittal, F. Frayman. Towards
a generic model of configuration tasks, proc of IJCAI, p.
1395-1401(1989).

[Pitiot et al., 2012] P. Pitiot, M. Aldanondo, E. Vareilles, L.
Zhang, T. Coudert. Some Experimental Results Relevant
to the Optimization of Configuration and Planning Prob-
lems, in : Lecture Notes in Computer Science Volume
7661, 2012, pp 301-310

[Pitiot et al., 2013] P. Pitiot, M. Aldanondo, E. Vareilles, P.
Gaborit, M. Djefel, S. Carbonnel, Concurrent product
configuration and process planning, towards an approach
combining interactivity and optimality, in: I.J. of Pro-
duction Research Vol. 51 n°2, 2013 , pp. 524-541.

[Schierholt 2001] K. Schierholt. Process configuration:
combining the principles of product configuration and
process planning AI EDAM / Volume 15 / Issue 05 / no-
vembre 2001 , pp 411-424

[Soininen et al., 1998] T. Soininen, J. Tiihonen, T. Männis-
tö, and R. Sulonen, Towards a General Ontology of Con-
figuration., in: Artificial Intelligence for Engineering
Design, Analysis and Manufacturing vol 12 n°4, 1998,
pp. 357–372.

[Zhang et al., 2013] L. Zhang, E. Vareilles, M. Aldanondo.
Generic bill of functions, materials, and operations for
SAP2 configuration, in: I.J. of Production Research Vol.
51 n°2, 2013 , pp. 465-478.

[Zitzler and Thiele 1998] E. Zitzler, L. Thiele, Multiobjec-
tive optimization using evolutionary algorithms - a com-
parative case study, in: proc. of 5th Int. Conf. on parallel
problem solving from nature, Eds. Springer Verlag,
1998, pp. 292-301.

[Zitzler et al., 2001] E. Zitzler, M. Laumanns, L. Thiele.,
SPEA2: Improving the Strength Pareto Evolutionary Al-
gorithm, Technical Report 103, Swiss Fed. Inst. of
Technology (ETH), Zurich (2001)

50 Paul Pitiot, Michel Aldanondo, Élise Vareilles, Thierry Coudert, Paul Gaborit

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Recommender Systems for Configuration Knowledge Engineering ∗

A. Felfernig, S. Reiterer, M. Stettinger, F. Reinfrank, M. Jeran, and G. Ninaus
Graz University of Technology

Inffeldgasse 16b, A-8010 Graz, Austria
{felfernig,reiterer,stettinger,reinfrank,jeran,ninaus}@ist.tugraz.at

Abstract
The knowledge engineering bottleneck is still a ma-
jor challenge in configurator projects. In this pa-
per we show how recommender systems can sup-
port knowledge base development and maintenance
processes. We discuss a couple of scenarios for
the application of recommender systems in knowl-
edge engineering and report the results of empirical
studies which show the importance of user-centered
configuration knowledge organization.

1 Introduction
Product knowledge changes frequently [Soloway, 1987].
Therefore, it must be possible to conduct knowledge base
development and maintenance operations efficiently. Since
the early developments of configurator applications in the
late 1970’s and early 1980’s [McDermott, 1982], knowledge
representations have been improved in terms of (1) model-
based approaches which allow a clear separation of do-
main knowledge and problem solving algorithms, (2) higher-
level knowledge representations which allow a component-
oriented representation of configuration knowledge (see, e.g.,
[Stumptner et al., 1998]), and (3) graphical knowledge rep-
resentations (e.g., [Felfernig et al., 2000; 2001]) which al-
low a compact representation. In addition to new knowl-
edge representations, intelligent diagnosis approaches have
been developed which help a knowledge engineer to identify
and repair erroneous configuration knowledge [Junker, 2004;
Felfernig et al., 2004; 2009; 2013].

Due to diversification strategies of companies, product
and service assortments are becoming increasingly large and
complex [Huffman and Kahn, 1998]. The complexity of
the underlying knowledge bases increases to the same extent
which requires additional concepts that help a knowledge en-
gineer to conduct knowledge base development and mainte-
nance operations in an efficient fashion. Furthermore, knowl-
edge bases are often developed by a group of persons with
different knowledge, goals, and focuses with regard to devel-
opment and maintenance operations. This situation requires
adaptive user interfaces to be integrated into configuration

∗The work presented in this paper has been funded by the Aus-
trian Research Promotion Agency (Project: ICONE (827587)).

knowledge engineering environments. Adaptive user inter-
faces for knowledge engineering have the potential to effec-
tively support engineers and domain experts in activities such
as learning (knowledge base understanding), finding (the rel-
evant items in the knowledge base), and testing & debugging
(removing the source of faulty behavior).

In order to offer more adaptivity in configurator devel-
opment environments, we propose the application of differ-
ent types of recommendation technologies [Jannach et al.,
2010] which proactively support domain experts and engi-
neers when creating and adapting configuration knowledge.
Such technologies should dispose of a basic understanding of
cognitive processes when persons develop and maintain con-
figuration knowledge bases. They should support functional-
ities such as recommending relevant items (variables, compo-
nent types, constraints, diagnoses, etc.) and simultaneously
omitting specific items that are not relevant. Recommender
systems have the potential to provide such a support (see, e.g.,
[Robillard et al., 2010]).

There are three basic recommendation approaches. First,
collaborative filtering [Konstan et al., 1997] determines rec-
ommendations based on the preferences of nearest neigh-
bors (users with similar preferences compared to the current
user). In this context, items are recommended to the cur-
rent user which have received a positive rating by the near-
est neighbors but are not known to the current user. Second,
content-based filtering [Pazzani and Billsus, 1997] recom-
mends items that are not known to the current user and are
similar to items that have already been purchased by her/him.
Similarity between items can be determined, for example,
on the basis of the similarity of keywords used to describe
the item. Third, knowledge-based recommenders recommend
items by using constraints or similarity metrics [Burke, 2000;
Felfernig and Burke, 2008].

This paper is organized as follows. In Section 2 we intro-
duce example scenarios for the application of recommender
technologies in knowledge engineering. Thereafter, we report
results of related empirical studies (see Section 3). In Section
4 we provide a discussion of related work. Conclusions and a
discussion of future research issues are given in Section 5.

2 Recommenders for Knowledge Engineering
Collaborative Recommendation of Constraints. Collabo-
rative filtering (CF) recommender systems have shown to be

Alexander Felfernig, S. Reiterer, M. Stettinger, F. Reinfrank, M. Jeran, G. Ninaus 51

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

one of the best choices to achieve serendipity effects, i.e., to
be surprised (in a positive sense) by item recommendations
one did not expect when starting the recommendation pro-
cess. In situations were knowledge engineers do not know the
configuration knowledge base very well, collaborative recom-
mendations can be exploited to support a more focused anal-
ysis of the knowledge base. The availability of navigation
data from other knowledge engineers is the major precondi-
tion for determining recommendations with collaborative fil-
tering. Table 1 shows an example of navigation data that de-
scribes in which order knowledge engineers (users) accessed
the constraints of a knowledge base. For simplicity we as-
sume that each of the users accessed each constraint (but in
different order). Similar applications of collaborative filter-
ing can be imagined for the recommendation of variables (or
component types) and instances of a component catalog.

Table 1 stores the information in which order the con-
straints have been visited by knowledge engineers (users),
for example, user 1 analyzed the constraints in the order
[c5, c2, c3, c1, c4, c6]. Let us assume that the current user has
already visited the constraints c5 and (then) c2. The nearest
neighbors of the current user (users with a similar navigation
behavior) are the users 1, 2, and 4. The majority of these
users analyzed constraint c1 in the third step – this one will
be recommended to the current user. Note that this recom-
mendation approach is currently under evaluation, therefore
no related empirical results will be reported in Section 3.

user c1 c2 c3 c4 c5 c6
1 4 2 3 5 1 6
2 3 2 5 6 1 4
3 1 3 2 4 6 5
4 3 2 4 5 1 6

current ? 2 ? ? 1 ?

Table 1: Recommending constraints (ci) with CF.

Content-based Clustering of Constraints. Another pos-
sibility to support knowledge engineers is to cluster con-
straints with the goal to improve the overall clarity of the
knowledge base. We will exemplify this on the basis of k-
means clustering [Witten and Frank, 2005]. Following this
approach, we have to generate k initial centroids which act
as (first) representatives of future clusters. In the following,
each object (in our case: constraint) is assigned to the group
(cluster) with the closest (most similar) centroid. Thereafter,
centroids are recalculated. In our case, a centroid is defined as
the object with the highest overall similarity to the other ob-
jects in the cluster. The algorithm terminates if the centroids
are stable (do not change). k-means clustering is guaranteed
to terminate but is not necessarily optimal since the outcome
depends on the initial centroids ([Witten and Frank, 2005]).

For demonstration purposes we introduce the following
simple configuration problem which is represented as a ba-
sic constraint satisfaction problem (CSP = (V, D, C)) where
V represents a set of variables {v1, v2, ..., v5}, D represents
the set of corresponding domains (dom(vi) = {1..5}), and C
represents the following set of constraints.
{c1 : v1 = 3 → v2 > 1, c2 : v1 = 3 ∧ v3 = 1, c3 : v2 =

2 → v3 = 1, c4 : v3 = 1 → v1 6= 1, c5 : v3 = 1 → (v4 =
2 ∧ v1 > v5), c6 : v4 ≥ 1 → v5 ≤ 4, c7 : v5 = 1 → v3 =
2 ∨ v3 = 3}.

On the basis of this simple knowledge base, we can
calculate the similarities between the individual constraints
(ca, cb) by using Formula 1. In this formula, V =
variables(ca) ∪ variables(cb), co−occurrence(v, ca, cb)
= 1 if v is contained in both constraints on the same
position, co−occurrence(v, ca, cb) = 0.5 if v is con-
tained in both constraints but on a different position, and
co−occurrence(v, ca, cb) = 0 of no co-occurrence exists.
Note that this is one possible approach to similarity determi-
nation. We also compared this approach with operator-based
similarity and a random assignment of constraints to clusters.

sim(ca, cb) =

∑
v∈V co–occurrence(v, ca, cb)

|V | (1)

The similarities between the pairs of individual constraints
are depicted in Table 2.

ci ∈ C c1 c2 c3 c4 c5 c6 c7
c1 1.0 - - - - - -
c2 0.33 1.0 - - - - -
c3 0.16 0.33 1.0 - - - -
c4 0.16 0.5 0.16 1.0 - - -
c5 0.1 0.25 0.1 0.37 1.0 - -
c6 0.0 0.0 0.0 0.0 0.12 1.0 -
c7 0.0 0.33 0.33 0.16 0.12 0.16 1.0

Table 2: Similarities between individual constraints.

On the basis of these individual similarities we are able to
determine a set of corresponding clusters (k = 2). The de-
termination of such clusters is exemplified in Table 3. First,
we (randomly) select two constraints as initial cluster cen-
ters (centroids): c1 and c5 (denoted by cs). In iteration 2 the
center of cluster 1 changes to c2 and we have to re-calculate
the cluster assignment. After this iteration, the assignment is
stable, i.e., the cluster centers (c2 and c5) remain the same.

iteration c1 c2 c3 c4 c5 c6 c7
1 1(cs) 1 1 2 2(cs) 2 2
2 1 1(cs) 1 1 2(cs) 2 1

Table 3: k-means clustering of C = {c1, c2, ..., c7}.

For the visualization of the constraints {c1, c2, ..., c7} this
means that the knowledge base would be presented in terms
of two constraint groups: {c1, c2, c3, c4, c7} and {c5, c6}.

Knowledge-based Refactoring Recommendations. The
way in which semantics is expressed has an impact on the
understandability of the knowledge base. For example, users
need less time to understand the semantics of a knowledge
base if implications are expressed in terms of A → B com-
pared to the alternative representation of ¬A ∨ B. Explicit
knowledge about the cognitive complexity of constraint rep-
resentations can be exploited to recommend structural and

52 Alexander Felfernig, S. Reiterer, M. Stettinger, F. Reinfrank, M. Jeran, G. Ninaus

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

semantics-preserving adaptations of knowledge structures.
Such recommendations are knowledge-based, since they are
explicitly encoded in refactoring rules.

3 Empirical Evaluation
For the content-based clustering of constraints and
knowledge-based refactoring recommendations we now
present the results of two empirical studies. In the first study,
we compared the applicability of three different clustering
strategies with regard to knowledge engineering tasks (find a
solution, find a minimal conflict) (see, e.g., [Junker, 2004]).

Study A: Clustering of Constraints. For two different
configuration knowledge bases (kba1, kba2) we conducted a
study based on an within-subjects design (N=40). Each study
participant (students of computer science who visited a re-
lated course on knowledge engineering) had the task of (1)
finding a solution (in kba1) and (2) finding a minimal conflict
(in kba2).1 There were no time limits regarding task com-
pletion. Each student was assigned to one type of cluster-
ing (one out of variable-based similarity, operator-based sim-
ilarity, and random clustering), i.e., we did not vary the type
of clustering per student. The knowledge bases (kba1, kba2)
were defined as CSPs in a domain-independent fashion in or-
der to avoid an additional cognitive complexity related to the
understanding of a product domain. The basic properties of
the used knowledge bases are summarized in Table 4.

Knowledge base #(vi ∈ V) vi domain size #(ci ∈ C)
kba1 5 5 15
kba2 10 3 10

Table 4: Knowledge bases used in Study A.

The outcome of this experiment is shown in Table 5.

Grouping approach kba1: SOL kba2: CON
Similar variables 21.43% 42.86%
Similar operators 30.77% 53.85%

Random 38.46% 76.92%

Table 5: Error rates for completing the tasks find a solution
(SOL) and find a conflict (CON) depending on clustering ap-
proach (variable-based, operator-based, or random).

From the three compared approaches to the clustering of
constraints in a configuration knowledge base, variable sim-
ilarity based clustering clearly outperforms operator-based
clustering and random clustering of constraints.

Study B: Cognitive Complexities. There are different
possibilities to represent equivalent semantics on the basis of
a constraint, for example, the requires relationship X → Y
can be represented in terms of ¬X ∨ Y . The incompatibil-
ity relationship ¬(X ∧ Y) can be represented as X → ¬Y .
Table 6 depicts five different possibilities to express requires
and incompatibility relationships.

1We used these tasks to measure knowledge understanding. Fur-
ther more differentiated tasks are within the scope of future work.

Requires Incompatibility

X → Y X → ¬Y
¬X ∨ Y ¬X ∨ ¬Y
¬Y → ¬X Y → ¬X
¬(X ∧ ¬Y) ¬(X ∧ Y)
Y ← X ¬Y ← X

Table 6: Five different possibilities of representing requires
and incompatibility relationships.

Study B is based on an within-subjects design (N=66) with
two configuration knowledge bases. Knowledge base kbb1
consisted of a set of requires constraints and kbb2 consisted
of a set of incompatibility constraints. Each study partici-
pant (again, computer science students who visited a related
knowledge engineering course) had the task of finding a solu-
tion for the given CSP. Each participant was confronted with
one version of kbb1 and one version of kbb2 conform the
schema depicted in Table 6. For example, if a student re-
ceived the X → Y version of kbb1 then she/he also received
the X → ¬Y version of kbb2. The knowledge bases kbb1
and kbb2 were (again) defined in a domain-independent fash-
ion (see Study A). The basic properties of the used knowledge
bases are summarized in Table 7.

Knowledge base #(vi ∈ V) vi domain size #(ci ∈ C)
kbb1 5 5 7
kbb2 3 3 5

Table 7: Knowledge bases used in Study B.

The outcome of this experiment is shown in Table 8.

kbb1: SOL errors kbb2: SOL errors
X → Y 21.43% X → ¬Y 14.29%
¬X ∨ Y 50.0% ¬X ∨ ¬Y 34.62%
¬Y → ¬X 96.43% Y → ¬X 50.0%
¬(X ∧ ¬Y) 73.08% ¬(X ∧ Y) 42.31%
Y ← X 25.0% ¬Y ← X 16.67%

Table 8: Error rates in solution identification (SOL) depend-
ing on constraint representation.

A result of the study is that basic implications (→) should
be preferred to other representations in order to maximize un-
derstandability. The only type of knowledge representation
with a similar performance is the reverse implication, how-
ever, when comparing both alternatives, the standard impli-
cation seems to be the better choice.

4 Related Work
There is a long history of research on the improvement of
knowledge engineering processes. Early research focused on
model-based knowledge representations that allowed a sepa-
ration of domain and problem solving knowledge. An exam-
ple of such a representation are constraint technologies which
became extremely popular as a technological basis for indus-
trial applications [Freuder, 1997]. In a next step, graphical

Alexander Felfernig, S. Reiterer, M. Stettinger, F. Reinfrank, M. Jeran, G. Ninaus 53

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

knowledge representations [Felfernig et al., 2000] and intel-
ligent techniques for knowledge base testing and debugging
have been developed [Felfernig et al., 2004]. The need of an
intuitive access to a corpus of software artifacts is also one of
the major requirements for software comprehension [Storey,
2006]. In this context, recommender systems [Jannach et
al., 2010] have already been identified as a valuable means
to provide intelligent support for the navigation in large and
complex software spaces (see, e.g., [Robillard et al., 2010]).
The application of recommendation technologies for support-
ing knowledge engineering processes is a new research area.
Research contributions in this field have the potential to sig-
nificantly improve the overall quality of knowledge engineer-
ing processes. In [Felfernig et al., 2010] basic knowledge
representations are compared, for example, the use of → to
represent an implication vs. the use of ¬ and ∨. This work
is an important step towards a discipline of empirical knowl-
edge engineering with a clear focus on usability aspects and
cognitive efforts needed to complete knowledge engineering
tasks. The work presented in this paper is a continuation of
the work of [Felfernig et al., 2010]. It takes a more detailed
look at different alternative representations of requires and
incompatibility relationships and introduces a new concepts
related to the content-based clustering of constraints.

5 Conclusions
In this paper we showed how recommenders can be exploited
to support knowledge engineering tasks. Examples are col-
laborative filtering of constraint sets, clustering of constraints,
and knowledge-based recommendation of refactoring oper-
ations. Future work will include the development of fur-
ther recommendation algorithms, for example, the inclusion
of content-based filtering and further clustering algorithms
as well as further empirical studies with more differentiated
maintenance tasks. Finally, we will focus on an in-depth anal-
ysis of existing research in the area of cognition psychology
which can further advance the state of the art in (configura-
tion) knowledge engineering.

References
[Burke, 2000] R. Burke. Knowledge-based recommender

systems. Library and Inf. Systems, 69(32):180–200, 2000.
[Felfernig and Burke, 2008] A. Felfernig and R. Burke.

Constraint-based recommender systems: Technologies
and research issues. In ACM International Conference on
Electronic Commerce (ICEC08), pages 17–26, 2008.

[Felfernig et al., 2000] A. Felfernig, G. E. Friedrich, and
D. Jannach. UML as Domain Specific Language for the
Construction of Knowledge-based Configuration Systems.
IJSEKE, 10(4):449–469, 2000.

[Felfernig et al., 2001] A. Felfernig, G. Friedrich, and
D. Jannach. Conceptual modeling for configuration of
mass-customizable products. Artificial Intelligence in En-
gineering, 15(2):165–176, 2001.

[Felfernig et al., 2004] A. Felfernig, G. Friedrich, D. Jan-
nach, and M. Stumptner. Consistency-based diagnosis

of configuration knowledge bases. Artificial Intelligence,
152(2):213–234, 2004.

[Felfernig et al., 2009] A. Felfernig, G. Friedrich, M. Schu-
bert, M. Mandl, M. Mairitsch, and E. Teppan. Plausible
repairs for inconsistent requirements. In 21st Intl. Joint
Conference on Artificical Intelligence (IJCAI’09), pages
791–796, Pasadena, CA, 2009.

[Felfernig et al., 2010] A. Felfernig, M. Mandl, A. Pum, and
M. Schubert. Empirical knowledge engineering: Cogni-
tive aspects in the development of constraint-based rec-
ommenders. In IEA/AIE 2010, pages 631–640, Cordoba,
Spain, 2010.

[Felfernig et al., 2013] A. Felfernig, M. Schubert, and S. Re-
iterer. Personalized Diagnosis for Over-Constrained Prob-
lems. In 23rd International Conference on Artificial Intel-
ligence, Peking, China, 2013.

[Freuder, 1997] E. Freuder. In pursuit of the holy grail. Con-
straints, 2(1):57–61, 1997.

[Huffman and Kahn, 1998] C. Huffman and B. Kahn. Va-
riety for Sale: Mass Customization or Mass Confusion.
Journal of Retailing, 74:491–513, 1998.

[Jannach et al., 2010] D. Jannach, M. Zanker, A. Felfernig,
and G. Friedrich. Recommender Systems. CUP, 2010.

[Junker, 2004] U. Junker. Quickxplain: Preferred expla-
nations and relaxations for over-constrained problems.
In 19th National Conference on Artificial Intelligence
(AAAI04), pages 167–172, San Jose, CA, 2004.

[Konstan et al., 1997] J. Konstan, B. Miller, D. Maltz,
J. Herlocker, L. Gordon, and J. Riedl. Grouplens: applying
collaborative filtering to usenet news. Communications of
the ACM, 40(3):77–87, 1997.

[McDermott, 1982] J. McDermott. R1: A Rule-based Con-
figurer of Computer Systems. Artificial Intelligence Jour-
nal, 19:39–88, 1982.

[Pazzani and Billsus, 1997] M. Pazzani and D. Billsus.
Learning and revising user profiles: the identification of
interesting websites. Mach. Learn., 27:313–331, 1997.

[Robillard et al., 2010] M. Robillard, R. Walker, and T. Zim-
mermann. Recommendation systems for software engi-
neering. IEEE Software, 27(4):80–86, 2010.

[Soloway, 1987] E. et al. Soloway. Assessing the Maintain-
abiliy of XCON-in-RIME: Coping with the Problem of
very large Rule-bases. In Proc. of AAAI-87, pages 824–
829, Seattle, Washington, USA, July 13–17 1987.

[Storey, 2006] M. Storey. Theories, tools and research meth-
ods in program comprehension: past, present and future.
Software Quality Journal, 14:187–208, 2006.

[Stumptner et al., 1998] M. Stumptner, G. Friedrich, and
A. Haselböck. Generative Constraint-based Configuration
of Large Technical Systems. AI EDAM, 12(4):307–320,
1998.

[Witten and Frank, 2005] I. Witten and E. Frank. Data Min-
ing. Morgan Kaufman, 2005.

54 Alexander Felfernig, S. Reiterer, M. Stettinger, F. Reinfrank, M. Jeran, G. Ninaus

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Solving Object-oriented Configuration Scenarios with ASP ∗

Gottfried Schenner and Andreas Falkner
Siemens AG Österreich, Vienna, Austria

gottfried.schenner@siemens.com
andreas.a.falkner@siemens.com

Anna Ryabokon and Gerhard Friedrich
Universität Klagenfurt, Austria

anna.ryabokon@aau.at
gerhard.friedrich@aau.at

Abstract
The main configuration scenarios occurring in the
domain of technical products and systems are con-
sistency checking, completing a partial configura-
tion, reconfiguration of an inconsistent configura-
tion and finding the best knowledge base for fu-
ture reconfigurations. This paper presents OOASP
- a framework for the description of object-oriented
product configurators using answer set program-
ming and shows that it is able to solve the differ-
ent (re)configuration scenarios occurring in prac-
tice. Thus, it is a step forward to close the concep-
tual gap between logic-based and object-oriented
approaches for product configuration.

1 Introduction
A configurator is a software system that enables the user
to design complex technical systems or services based on a
predefined set of components. In modern configuration sys-
tems, domain knowledge - comprising configuration require-
ments (product variability) and customer requirements - is ex-
pressed in terms of component types and relations between
them. Each type is characterized by a set of attributes which
specify the functional and technical properties of real-world
and abstract components of the configurable product. An at-
tribute takes values from within a predefined domain. Fur-
thermore, components are related/connected to each other in
various ways. Each component type has a number of ports
which allow to connect a component of that type with other
components. A possible connection between two component
types is modeled as a relation and its cardinality expresses
the number of components that can be connected to a port. In
most cases, modeling languages used in configuration allow
to specify relations of the following types: classification (is-
a), composition (part-of), association (user defined relations).

For simple customer products, a configuration system aims
at finding a consistent and complete configuration for a given
set of customer requirements and reconfiguration is seldom
an issue. Reconfiguration occurs during the maintenance of

∗This work has been developed within the scope of the project
RECONCILE (reconciling legacy instances with changed ontolo-
gies) and was funded by FFG FIT-IT (grant number 825071).

technical systems with a long life-span, where parts of exist-
ing configurations have to be adapted continuously.

Reconfiguration is especially challenging if an existing
system has to be extended with new functionality that was not
part of the original system design. In this case, some relations
between new and existing components have to be created or
some of the existing relations have to be changed in order
to meet modified configuration requirements. [Falkner and
Haselböck, 2013] discuss typical problems occurring when
configuration requirements are changed. Finding the best de-
sign for future configurations is an important task for the re-
configuration scenario since it allows to reduce costs during
the production process.

In the current paper we present a generic configurator
which uses an object-oriented approach to encode its knowl-
edge base. In order to compute configurations the sys-
tem uses answer set programming (ASP). We illustrate the
mapping from an object-oriented formalism (UML) to logi-
cal descriptions using a simplified real-world example from
Siemens. Additionally, the paper provides different insights
on (re)configuration scenarios such as checking and com-
pleting a configuration, reconciliation and choosing the best
knowledge base for reconciliation. Finally, we discuss chal-
lenges which frequently occur in practice and should be taken
into account while solving (re)configuration problems.

The remainder of this paper is organized as follows: In Sec-
tion 2 we introduce a sample configuration problem used as
example throughout the paper. After an ASP overview in Sec-
tion 3, we describe in Section 4 how object-oriented knowl-
edge bases can be specified using ASP. In Section 5 various
product configuration scenarios are discussed. Section 6 pro-
vides some evaluation details and in Section 7 we conclude.

2 Configuration example
Modules example is a simple hardware configuration prob-
lem. Figure 1 shows the configurable objects of the example
domain in a UML diagram: hardware frames contain up to
five modules of various types (A, B) and elements of various
types are assigned to the modules (one by one). Additionally
to the cardinality constraints implied by the UML diagram
there are the following domain-specific constraints:

• Elements of type ElementA require a module of type
ModuleA

Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich 55

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Figure 1: UML diagram for the modules example

• Elements of type ElementB require a module of type
ModuleB

• The position of the modules of a frame must be unique

In a typical configurator scenario for this domain, a user cre-
ates a partial configuration consisting of elements of different
types. Then the configurator extends the configuration by cre-
ating missing modules for the elements and by creating miss-
ing frames and assigning the modules to them. If the user ma-
nipulates a completed configuration, for instance by adding or
removing elements, the configurator can restore consistency
through reconfiguration, usually by keeping as much of the
existing structure of the configured system as possible.

3 Answer set programming overview
Answer set programming is an approach to declarative prob-
lem solving which has its roots in logic programming and
deductive databases. It is a decidable fragment of first-order
logic interpreted under stable model semantics and extended
with default negation, aggregation, and optimization. ASP al-
lows modeling of a variety of (combinatorial) search and op-
timization problems in a declarative way using model-based
problem specification methodology (see e.g. [Gelfond and
Lifschitz, 1988; Eiter et al., 2009; Brewka et al., 2011] for
details). ASP has a long history of being used for product
configuration [Soininen and Niemel, 1998].

An ASP program is a finite set of rules of the form:

a :- b1, . . . , bm, not c1, . . . , not ck. (1)

where a, bi, and cj are atoms of the form
predicate(term1, . . . , termn). A term is either a variable or a
constant.

In most of ASP languages, variables are denoted by strings
starting with uppercase letters and constants as well as pred-
icates by strings starting with lower case letters. An atom
together with its negation is called literal, e.g. a is a
positive and not a is a negative literal. In the rule (1),

the literal a is the head of the rule and the conjunction
b1, . . . , bm, not c1, . . . , not ck is the body. A rule with an empty
head, standing for false, is called an integrity constraint, i.e.
every interpretation that satisfies the body of the constraint
is not an answer set (configuration solution). A rule with an
empty body is called a fact. Rule (1) derives that the atom
a in the head of the rule is true if all literals of the body
are true, i.e. there is a derivation for each positive literal
b1, . . . , bm whereas none of the atoms of the negative literals
not c1, . . . , not ck can be derived.

Processing of a general ASP program P , in which atoms
can contain variables, is done in two stages [Brewka et
al., 2011]. First the program is grounded, i.e. P is re-
placed by a possibly small equivalent propositional program
grnd(P) in which all atoms are variable-free. In the sec-
ond stage an ASP solver is used to identify answer sets.
Following the definition of configuration problems based
on logical descriptions, presented in [Soininen et al., 2001;
Felfernig et al., 2004], each configuration is a subset of a fi-
nite Herbrand-model. Given the stable model semantics used
in ASP, a Herbrand interpretation I is a model of a program P
iff (a) it satisfies all the rules in P , (b) for every atom ai ∈ I
there exists a justification based on given facts and (c) I is
minimal under set inclusion among all (consistent) interpre-
tations.

In this paper we use an ASP dialect implemented in
Gringo [Gebser et al., 2011]1 which includes a number of ex-
tensions simplifying the presentation of the programs. Thus,
it allows definition of weight constraints which are defined
as l[a1 = w1, . . . , an = wn]u where ai are atoms, wi are weights
of the atoms and l, u are integers specifying lower and upper
bounds. Such constraints allow declaration of choices, i.e.
such number of atoms from the set {a1, . . . , an} must be true
that the sum of corresponding weights is between l and u. If
the lower or upper bounds are missing, then the ASP grounder
substitutes l = 0 and u = n, where n is the sum of the weights
of all atoms in the set. A special case of the weight con-
straints are cardinality constraints where each weight wi = 1.
Cardinality constraints are denoted by curly brackets.

ASP dialects include operators that are used for generating
sets of atoms: The range operator (“..”) is used to generate a
set of atoms such that each atom includes one of the integer
constants from a given range of integers. The generate oper-
ator (“:”) is used in weight constraints to create sets of atoms
used in it.

Example Assume that we want to encode a simple problem
instance of the modules example including two frames with
ids 1 and 2, and six modules with ids ranging from 10 to 15.
These customer requirements can be represented as facts:

frame(1..2). module(10..15).

The relation between modules and frames, i.e. that each mod-
ule must be placed in exactly one frame, is encoded using a
choice rule:

1{mod2fr(X,Y) : frame(Y)}1 :- module(X).

1Potassco ASP suite: http://potassco.sourceforge.net

56 Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

When the rule above is grounded, the grounder generates six
rules - one for each module. E.g., for module 10 it outputs:
1{mod2fr(10,1), mod2fr(10,2)}1 :- module(10).

In order to allow at most five modules to be put in a frame we
add the following cardinality constraint to our program:
:- frame(X), 6 {mod2fr(Y,X) : module(Y)}.
Due to the cardinality constraint every configuration (answer
set) containing a frame with more than 5 modules will be
eliminated.

Identification of the preferred configuration solution can
be done using the built-in optimization functionality of ASP
solvers. In the ASP dialect used in this paper, the optimiza-
tion is defined on a weighted set of true atoms and indicated
via #minimize or #maximize statements.

4 OOASP framework
OOASP2 is a framework for describing object-oriented
knowledge bases in ASP. A knowledge base consists of the
object model of the configurator and additional constraints
which a valid configuration must satisfy. It is assumed that
the object model of the object-oriented configurator can be
described by an UML class diagram [Rumbaugh et al., 2005].
The structure of a knowledge base and configurations are de-
scribed by special ASP facts. This fact-based language can
be seen as a domain specific language (DSL) for defining
object-oriented knowledge bases and configurations on top
of ASP. The DSL can represent multiple configurator knowl-
edge bases and solutions in one ASP program. The OOASP
framework provides a default implementation for the DSL,
e.g. the interpretation of the fact-based language, in several
program packages (*.lp files). If advanced features (such
as multiple inheritance, automatic symmetry breaking) are
required, the default implementation must be replaced with
alternative implementations, whereas the OOASP-DSL can
stay the same. The OOASP-DSL is largely independent of
special ASP features and can therefore be easily translated to
other formalisms (OWL/RDF, UML, etc.).

4.1 Defining the knowledge base
The knowledge base comprises an object-model describing
types of available components and possible relations between
them. In addition, it can include a number of constraints
on types and relations. To define the object-model of the
configurator with the OOASP-DSL, the following predicates
are used where all IDs are considered to be unique within a
knowledge base.

ooasp_class(KBID,CID)

• Defines a class in the knowledge base KBID 3.
KBID is an id for a knowledge base and CID is an id for
a class within the given knowledge base.

ooasp_subclass(KBID,CID,SUPERCID)

2The ASP code for OOASP is available upon request from the
first author

3To allow uppercase names, OOASP identifiers are strings, not
constants

• Defines an inheritance hierarchy of classes. Although
other interpretations are possible, in this paper the inher-
itance hierarchy is assumed to be a tree (single inheri-
tance).

ooasp_assoc(KBID,ASSOCID,
CID1,C1MIN,C1MAX,CID2,C2MIN,C2MAX)

• Defines the association between classes CID1 and CID2
within given cardinalities, i.e. for every instance of
CID1 there exist at least C2MIN and at most C2MAX
instances of CID2 in the association and vice versa.

ooasp_attribute(KBID,CID,ATTRID,
{"string","integer","boolean"})

• Defines an attribute for the class CID with the given
type.

ooasp_attribute_minInclusive(KBID,CID,
ATTRID,MINVALUE)

• Defines an optional minimum value for integer attributes

ooasp_attribute_maxInclusive(KBID,CID,
ATTRID,MAXVALUE)

• Defines an optional maximum value for integer at-
tributes

ooasp_attribute_enum(KBID,CID,
ATTRID,ENUMVALUE)

• Defines an enum-value (a possible value) for a string at-
tribute.

The mentioned predicates are sufficient to describe the
object-model of a simple object-oriented configurator. Many
features which can be additionally found in object-oriented
systems such as initial values, constants, multi-valued at-
tributes, ordered associations, etc. are currently missing in the
framework, but these features are not relevant to the demon-
stration of the configuration scenarios presented in the paper.
In practice, especially ordered associations and initial values
are a convenient feature of object oriented product configura-
tors.

Example The OOASP-DSL representation for the modules
example corresponds to the following set of facts:
% modules example kb "v1"
% classes
ooasp_class("v1","ConfigObject").
ooasp_class("v1","Frame").
ooasp_class("v1","Module").
ooasp_class("v1","ModuleA").
ooasp_class("v1","ModuleB").
ooasp_class("v1","Element").
ooasp_class("v1","ElementA").
ooasp_class("v1","ElementB").

% class inheritance
ooasp_subclass("v1","Frame","ConfigObject").
ooasp_subclass("v1","Module","ConfigObject").
ooasp_subclass("v1","Element","ConfigObject").
ooasp_subclass("v1","ElementA","Element").
ooasp_subclass("v1","ElementB","Element").

Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich 57

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

ooasp_subclass("v1","ModuleA","Module").
ooasp_subclass("v1","ModuleB","Module").

% attributes and associations
% class Frame
ooasp_assoc("v1","Frame_modules",

"Frame",1,1,
"Module",0,5).

% class Module
ooasp_attribute("v1","Module","position","integer").
ooasp_attribute_minInclusive("v1",

"Module","position",1).
ooasp_attribute_maxInclusive("v1",

"Module","position",5).

% class Element
ooasp_assoc("v1","Element_module",

"Element",1,1,
"Module",1,1).

4.2 Defining a configuration
A (partial) configuration is an instantiation of the object-
model. A valid configuration is a configuration where no
constraint is violated. It represents a buildable artifact of the
configured system.

As with knowledge-bases, OOASP allows the representa-
tions of multiple configurations within one ASP program. We
use the following predicates to define a (partial) configura-
tion:
ooasp_configuration(KBID, CONFIGID)

• Declares that the configuration CONFIGID belongs to
the knowledge base KBID. Every configuration has a
unique ID and belongs to exactly one knowledge base.

ooasp_isa(CONFIGID, CID, OBJECTID)

• The object with the id OBJECTID is an instance of the
class CID in the configuration CONFIGID. If an object
is an instance of a class, it must also be an instance of
one of its leaf classes (i.e. class without subclasses).

ooasp_associated(CONFIGID,ASSOCID,
OBJECTID1,OBJECTID2)

• The objects with the OBJECTID1 and OBJECTID2 are
associated in the association ASSOCID in the configu-
ration CONFIGID.

ooasp_attribute_value(CONFIGID,ATTRID,
OBJECTID,VALUE)

• The attribute ATTRID of the object OBJECTID has the
value VALUE in the configuration CONFIGID.

Example The following configuration consisting of one
frame, one module, and one element is not valid. It would
be valid if the module 10 was a ModuleB.
ooasp_configuration("v1","c1").
ooasp_isa("c1","Frame",1).
ooasp_isa("c1","ModuleA",10).
ooasp_attribute_value("c1","position",10,5).
ooasp_isa("c1","ElementB",20).
ooasp_associated("c1","Frame_modules",1,10).
ooasp_associated("c1","Element_module",20,10).

4.3 Defining constraints
There are two different kinds of constraints in OOASP: in-
tegrity constraints and domain-specific constraints. Both are
implemented as ASP rules which derive an atom ooasp_cv
(head) for each constraint violation expressed in the body.
The derived atom can be used for explanations.

Integrity constraints are generic constraints derived from
the object model of the knowledge base. Implementations of
integrity constraints are provided by the OOASP framework
in program package ooasp check.lp, e.g. for the constraint
which checks the minimal cardinality of associations:

% Derive ooasp_cv(CONF,mincardviolated(ID1,ASSOC))
% whenever there are less objects associated
% with object ID1 than allowed by the cardinality
% restriction of the association
ooasp_cv(CONF,mincardviolated(ID1,ASSOC)) :-

{ ooasp_associated(CONF,ASSOC,ID1,ID2):
ooasp_isa(CONF,C2,ID2) } C2MIN-1,

C2MIN>0,
ooasp_isa(CONF,C1,ID1),
ooasp_assoc(KBID,ASSOC,

C1,C1MIN,C1MAX,C2,C2MIN,C2MAX),
ooasp_configuration(KBID,CONF).

In addition to the integrity constraints, a knowledge engi-
neer can define domain-specific constraints for a knowledge
base. These are constraints that can not be derived automati-
cally from the knowledge base.

Example The first of the constraints in the modules exam-
ples may be implemented as follows:

% ElementA requires ModuleA
ooasp_cv(CONF,wrongModuleType(E,M)) :-

ooasp_configuration("v1",CONF),
ooasp_associated(CONF,"Element_module",E,M),
ooasp_isa(CONF,"ElementA",E),
not ooasp_isa(CONF,"ModuleA",M).

5 Product Configuration Scenarios
This section describes some of the typical scenarios for an
object-oriented product configurator.

5.1 Checking a Configuration
Checking a (partial) configuration evaluates the integrity
constraints of the knowledge base and the domain-specific
constraints for a configuration under closed world assump-
tion, i.e. during the checking no new objects are instantiated.

In an interactive configurator, checking the current config-
uration highlights the parts of the configuration that need to
be changed by a user.

Example Checking the minimal configuration consisting of
only one element of type A

ooasp_isa("c2","ElementA",10).

will derive a cardinality violation

ooasp_cv("c2",mincardviolated(10,"Element_module")).

58 Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Figure 2: Checking a configuration

for the association between element and module, indicating
that there must be a module for the element with OBJECTID
10.

The constraint violations derived during checking can also
guide a repair-based solver to repair the current configuration
[Falkner et al., 2011]. If checking does not find any con-
straint violation, the current configuration is valid. The pro-
cess of checking a configuration within OOASP framework
is depicted in Figure 2.

5.2 Completing a Configuration
Given a possible empty (partial) configuration, find an ex-
tension of the configuration that satisfies all constraints. No
fact of the given configuration may be removed. If no such
extension can be found, the current configuration is either in-
consistent or there is no valid configuration with the given
upper bounds for object instances.

Completing a configuration can be accomplished by enu-
merating all possible extensions of the given configuration
until a valid configuration is found. Figure 3 shows the nec-
essary program packages for completing a configuration.

Figure 3: Completing a configuration

To enumerate all possible configurations one has to instan-
tiate objects according to customer requirements. The num-
ber of the possible instances is controlled by the predicate
ooasp_domain(CONFIGID, CID, OBJID)

• The object with the OBJID can be instantiated to one of
the leaf-classes of class CID.

The ooasp_domain facts define the available object IDs
for a configuration. The object IDs are unique within a con-
figuration. Every object ID can represent one instance of a
leaf-class. However, the classes used in the ooasp_domain
predicates can be non-leaf-classes as well. Therefore, the
number of ooasp_domain facts for each class CID is equal
to the maximal number of its instances in the configura-
tion CONFIGID. From the ooasp_domain facts the possi-
ble types of every object ID in a configuration are derived
(ooasp_canbe), searching up and down the class hierarchy
(see (1) in Figure 4). The ooasp_isa facts (2) are derived
upwards only. This approach of controlling instantiation is
similar to the notion of a scope in Alloy [Jackson, 2011].

Example ooasp_domain("c3","Module",20) allows
the object with OBJECTID 20 to become either a ModuleA
or a ModuleB but not Frame. In a second step it may be
set explicitly to be a ModuleA. Figure 4 shows the derived
information after the object has been instantiated this way.

Figure 4: Controlling instantiation

The enumeration of all possible configurations is accom-
plished by instantiating objects and setting associations and
attributes. The default implementation for instantiating ob-
jects is done in program package ooasp config.lp:
% instantiate objects
0 { ooasp_isa(CONF,LEAFCLASS,ID) :

ooasp_leafclass(V,LEAFCLASS) :
ooasp_canbe(CONF,LEAFCLASS,ID) } 1 :-

ooasp_domain(CONF,C,ID),
ooasp_configuration(V,CONF).

This means that every object ID can become an instance
of one of its possible leaf-class types. Associations are set
in a similar matter. Every instance in the configuration can
be associated with all other possible instances in the config-
uration. Constraints ensure that only instantiated objects are
associated.
% associate objects
C2MIN { ooasp_associated(CONF,ASSOC,ID1,ID2):

ooasp_canbe(CONF,C2,ID2) } :-
ooasp_isa(CONF,C1,ID1),
ooasp_assoc(V,ASSOC,C1,C1MIN,C1MAX,C2,C2MIN,C2MAX),
ooasp_configuration(V,CONF).

Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich 59

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

% type check - only use instantiated objects
:- ooasp_associated(CONFIG,ASSOC,ID1,ID2),

not ooasp_isa(CONFIG,C2,ID2),
ooasp_assoc(V,ASSOC,C1,C1MIN,C1MAX,C2,C2MIN,C2MAX),
ooasp_configuration(V,CONFIG).

Finally, there must be a generating rule for all possible val-
ues of the attributes of an object. The following shows the
generating rule for integer attributes.
% set attribute values for integer attributes
1 { ooasp_attribute_value(CONFIG,N,ID,VALUE):

VALUE=MIN..MAX } 1 :-
ooasp_attribute(V,C,N,T),
ooasp_isa(CONFIG,C,ID),
ooasp_attribute_minInclusive(V,C,N,MIN),
ooasp_attribute_maxInclusive(V,C,N,MAX),
ooasp_configuration(V,CONFIG).

Example Figure 5 shows a completed configuration for
the partial configuration c3 below. It contains three in-
stances of ElementA and two instances of ElementB. Note
that ooasp_isa is given as customer requirement only for
those elements. For modules, only the ooasp_domain is
given and only 5 of the available 10 IDs are used in the com-
pleted configuration.
% Partial configuration
ooasp_configuration("v1","c3").
ooasp_domain("c3","Frame",1).
ooasp_domain("c3","ElementA",10..12).
ooasp_isa("c3","ElementA",10..12).
ooasp_domain("c3","ElementB",13..14).
ooasp_isa("c3","ElementB",13..14).
ooasp_domain("c3","Module",20..29).

Figure 5: Complete configuration for the modules example

5.3 Reconciliation
Given a complete legacy configuration and the changed
knowledge base which makes the configuration invalid, find
a new valid configuration that is close to the legacy configu-
ration.

Reconciliation of a configuration is illustrated in Figure 6.
OOASP uses the same cost-based reconciliation approach as
described in [Friedrich et al., 2011]. For every change in the
legacy configuration, a cost can be defined. This allows a fine
control over the reconfiguration process. The optimal recon-
ciliation is the reconfiguration that minimizes the costs. For
example, the rule for reconciling associations either keeps the

Figure 6: Reconcile a configuration

link between two objects in the legacy configuration or re-
moves it. Reconciliation is controlled by the following pred-
icates:

ooasp_reconcile(LEGACY,RECONCILED)

• Activates reconciliation from configuration LEGACY to
the configuration RECONCILED

ooasp_cost_instance(KB,CID,ADD,REMOVE)

• Defines the costs for adding and removing instances of
class CID

ooasp_cost_assoc(KB,ASSOC,ADD,REMOVE)

• Defines the costs for adding and removing a link to/from
the association ASSOC

ooasp_cost_attribute(KB,ATTR,COST)

• Defines the cost for changing attribute ATTR

ooasp_rcost(CHANGEOFLEGACYCONFIGURATION,COST)

• For every modification of the legacy configuration an
ooasp_rcost atom is derived, defining the COST of the
modification. The best reconciliation is the one that min-
imizes the overall cost of the ooasp_rcost atoms, i.e.
#minimize[ooasp_rcost(CHANGE,COST)=COST].

The following listing shows the implementation of the
rules for reconciling associations:

% either reuse link or remove it:
% ooasp_remove_associated is derived,
% if a link is removed
1 { ooasp_associated(RECONCILED,ASSOC,ID1,ID2),

ooasp_remove_associated(RECONCILED,ASSOC,
ID1,ID2) } 1 :-

ooasp_associated(LEGACY,ASSOC,ID1,ID2),
ooasp_reconcile(LEGACY,RECONCILED).

% derive the reconfiguration costs
% ooasp_rcost contains the overall costs
ooasp_rcost(ooasp_remove_assoc(ID1,ID2),REMOVE) :-

ooasp_remove_associated(RECONCILED,ASSOC,ID1,ID2),
ooasp_cost_assoc(KB,ASSOC,ADD,REMOVE),
ooasp_configuration(KB,RECONCILED),
ooasp_reconcile(LEGACY,RECONCILED).

60 Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Example Suppose after the first systems of our example do-
main have been built, there is evidence of a previously un-
known overheating problem if two modules of type A are put
next to each other in a frame. Thus, to prevent overheating
we have to add a new constraint to the knowledge base that
disallows putting two modules of type A next to each other.
% do not put 2 modules of type moduleA
% next to each other
ooasp_cv(CONF,moduleANextToOther(M1,M2,P1,P2)):-

ooasp_configuration("v2",CONF),
ooasp_associated(CONF,"Frame_modules",F,M1),
ooasp_associated(CONF,"Frame_modules",F,M2),
ooasp_attribute_value(CONF,"position",M1,P1),
ooasp_attribute_value(CONF,"position",M2,P2),
M1!=M2,
ooasp_isa(CONF,"ModuleA",M1),
ooasp_isa(CONF,"ModuleA",M2),
P2=P1+1.

Figure 7: Reconciled configuration for the modules example

Because of the added constraint the legacy configuration in
Figure 5 is no longer valid. Using reconciliation with equal
costs for all changes to the configuration results in the new
configuration shown in Figure 7.

5.4 Choosing the best knowledge base for
reconciliation

Given a new technical requirement and N knowledge bases
satisfying that requirement, choose the knowledge base that
minimizes the costs for reconciling legacy configurations and
the estimated costs for building a new system and maintaining
existing systems.

Note that the costs for maintaining systems may also con-
tain the costs for future reconciliations. Often there are many
different technical solutions satisfying new requirements af-
fecting existing systems. The choice of a technical solu-
tion that minimizes the costs for reconciliation of the legacy
systems is an important problem to be solved. Given costs
for various system modifications, we have to find a solution
which corresponds to the most cost-effective reconciliation.

Example A possible technical solution for the overheating
modules is to avoid putting the modules next to each other.
Suppose there is an alternative technical solution replacing
module A with a new module ANEW, which does not have
the overheating problem.

Figure 8: Reconciled configuration with the module of type
ANEW

Reconcilation in the alternative knowledge base consists in
replacing modules of type A with modules of type ANEW,
but no rearranging is necessary. The result is shown in Fig-
ure 8. If modules of type A can be used together with type
ANEW then it is sufficient to just replace module A 21 with
module ANEW 31.

Which technical solution shall be chosen? To answer this
question one has to find the affected configurations. With
a framework like OOASP, the effected legacy configurations
(i.e. deployed systems which must be reconfigured) can be
computed by checking the constraint representing the new
technical requirement in all available legacy configurations.
Note that legacy configurations may use earlier versions of
the knowledge base. In this case the legacy configurations
must be upgraded to the current version of the knowledge
base or the constraint must be expressed in terms of the legacy
knowledge bases.

Using the reconcile scenario one can compute how costly it
would be to modify the existing legacy configurations to the
available technical solutions.

The cost for new systems can be estimated by computing
the configuration cost of existing legacy systems, i.e. how
costly it would have been to build these systems from scratch
with the new knowledge bases. This can be computed by
a configurator using the initial (partial) configuration, i.e. the
customer requirements and completing the configuration with
the new knowledge base.

The costs for future reconciliations are hard to compute in
general, unless there is some knowledge about the future re-
quirements. Otherwise, one has to estimate how often the
critical constellations will occur. By concentrating on the
most probable reconcile scenarios of a product configurator,
one can simulate these reconciliation scenarios using alterna-
tive knowledge bases and compare their costs.

6 Evaluation
The main purpose of OOASP is to demonstrate the behavior
of an object-oriented configurator within a logical framework.
Therefore, performance was not the main focus of this paper.
Since OOASP uses a similar approach as [Friedrich et al.,
2011], its performance is similar, too.

For checking configurations, the framework proved to be
able to handle more than 1000 components for integrity con-

Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich 61

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

straints and simple domain-specific constraints. Of course,
one can always come up with complex constraints, like find-
ing all paths in a graph, for which computation of logical
models is infeasible.

Completing a configuration can be handled for problems
with hundreds of components. The main limiting factor
here is the grounding size. The grounding explodes since
the generic translation of UML to ASP rules of the default
OOASP implementation associates every possible object of
one related type with every other possible object of the other
type. The grounding of the module example with 200 objects
is already greater than 500 MB. One can reduce the ground-
ing size by replacing the rules of the generic translation with
special instantiation rules as follows:

% associate objects
% special implementation
% ’create’ a module for every element
% at a fixed object ID
1 {ooasp_associated(CONF,

"Element_module",
ID1,1000+ID1)} 1:-

ooasp_isa(CONF,"Element",ID1),
ooasp_configuration(V,CONF).

This is similar to automatically generating subobjects in
an object-oriented setting. However, these special rules can
no longer be used for reconfiguration, because they assume
that for every element there is a unique module at a fixed ob-
ject ID. Another way to avoid the explosion of grounding size
would be to use a constraint-based model. Additional limit-
ing factor is the current lack of ASP to incorporate domain-
specific heuristics into the solving, which is a topic of active
research.

7 Conclusions
This paper demonstrates the implementation of a small
object-oriented product configurator on top of ASP. The
framework contains a domain-specific language for specify-
ing knowledge bases and configurations, that can be easily
translated to other formalisms (OWL/RDF, UML/Java).

Evaluations showed that checking constraints relative to a
given configuration can be done effectively. However, finding
(re)configurations efficiently remains a challenge for large-
scale product configuration. The main obstacle for SAT- and
ASP-based approaches seems to be the explosion of ground-
ing. In addition, the identification of appropriate domain-
specific heuristics is an open problem for all search-based
approaches.

By defining typical configuration scenarios we hope to
raise awareness to often neglected aspects of product config-
uration. We demonstrated the handling of these scenarios in
ASP and are going to continue this work for other formalisms
such as constraint programming, RDF/OWL, etc.

References
[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and

Miroslaw Truszczynski. Answer set programming at a
glance. Communications of the ACM, 54(12):92–103,
2011.

[Eiter et al., 2009] Thomas Eiter, Giovambattista Ianni, and
Thomas Krennwallner. Answer set programming: A
primer. In Reasoning Web, pages 40–110, 2009.

[Falkner and Haselböck, 2013] Andreas Falkner and Alois
Haselböck. Challenges of Knowledge Evolution in Prac-
tice. AI Communications, 26:3–14, 2013.

[Falkner et al., 2011] Andreas Falkner, Alois Haselböck,
Gottfried Schenner, and Herwig Schreiner. Modeling and
solving technical product configuration problems. Arti-
ficial Intelligence for Engineering Design, Analysis and
Manufacturing, 25:115–129, 2011.

[Felfernig et al., 2004] Alexander Felfernig, Gerhard
Friedrich, Dietmar Jannach, and Markus Stumptner.
Consistency-based diagnosis of configuration knowledge
bases. Artificial Intelligence, 152(2):213–234, 2004.

[Friedrich et al., 2011] Gerhard Friedrich, Anna Ryabokon,
Andreas A. Falkner, Alois Haselböck, Gottfried Schenner,
and Herwig Schreiner. (Re)configuration based on model
generation. In Conrad Drescher, Ins Lynce, and Ralf
Treinen, editors, LoCoCo, volume 65 of EPTCS, pages
26–35, 2011.

[Gebser et al., 2011] Martin Gebser, Benjamin Kaufmann,
Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Marius Thomas Schneider. Potassco: The Potsdam answer
set solving collection. AI Communications, 24(2):105–
124, 2011.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In 5th International Conference and
Symposium on Logic Programming, pages 1070–1080,
1988.

[Jackson, 2011] D. Jackson. Software Abstractions: Logic,
Language and Analysis. Mit Press, 2011.

[Rumbaugh et al., 2005] James Rumbaugh, Ivar Jacobson,
and Grady Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 2 edition, 2005.

[Soininen and Niemel, 1998] Timo Soininen and Ilkka
Niemel. Formalizing configuration knowledge using rules
with choices. In Seventh International Workshop On
Nonmonotonic Reasoning, 1998.

[Soininen et al., 2001] Timo Soininen, Ilkka Niemelä, Juha
Tiihonen, and Reijo Sulonen. Representing configuration
knowledge with weight constraint rules. In 1st Interna-
tional Workshop on Answer Set Programming: Towards
Efficient and Scalable Knowledge, pages 195–201, 2001.

62 Gottfried Schenner, Andreas Falkner, Anna Ryabokon, Gerhard Friedrich

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Configuring Domain Knowledge for Natural Language Understanding

Matt Selway and Wolfgang Mayer and Markus Stumptner
University of South Australia

Adelaide
{<first_name>.<last_name>}@unisa.edu.au

Abstract
Knowledge-based configuration has been used for
numerous applications including natural language
processing (NLP). By formalising property gram-
mars as a configuration problem, it has been shown
that configuration can provide a flexible, non-
deterministic, method of parsing natural language.
However, it focuses only on syntactic parsing. In
contrast, configuration is usually performed using
knowledge about a domain and is semantic in na-
ture. Therefore, we argue that configuration has
the potential to be used, not only for syntactic pro-
cessing, but for the semantic processing of natural
language, effectively supporting Natural Language
Understanding (NLU).
In this paper, we propose an approach to NLP that
applies configuration to the (partial) domain model
evoked by the processing of a sentence. This has
the benefit of ensuring the meaning of the sentence
is consistent with the existing domain knowledge.
Moreover, it allows the dynamic incorporation of
domain knowledge in the configuration model as
the text is processed. We demonstrate the approach
on a business specification based on the Semantics
of Business Vocabulary and Rules.

1 Introduction
Knowledge-based configuration has been used in numerous
applications. While historically used for configuring phys-
ical products, configuration has been applied to other do-
mains such as software services, software product lines, and
constraint-based language parsing [Hotz and Wolter, 2013].

In particular, [Estratat and Henocque, 2004; Kleiner et al.,
2009] have applied configuration to a translation of prop-
erty grammars (a constraint-based linguistic formalism). By
formalising property grammars as a configuration problem,
they show that configuration can provide a flexible, non-
deterministic method for parsing natural language. However,
these approaches focus on syntactic parsing by using the con-
figuration process to generate a parse tree. In contrast, con-
figuration is usually applied to domain knowledge, that is, se-
mantic processing. Furthermore, in [Kleiner et al., 2009] ad-
ditional processes are required in order to transform the parse

tree into a semantic model to make use of the domain knowl-
edge. This causes some issues in ensuring the consistency
and correctness of the domain knowledge.

In this paper we present an approach to parsing natural lan-
guage that performs semantic processing directly using con-
figuration. Instead of a model of language categories (e.g.
noun, verb, noun phrase) and the properties (or constraints)
on those categories, such as property grammars, we use a
model of domain concepts and the relations between them.
As a result, we perform natural language understanding; at
least with respect to the semantic model being used.

Our approach maintains the advantages of using configu-
ration for natural language processing, while gaining the fol-
lowing: (1) a simplified lexicon containing minimal lexical
information, (2) improved consistency of the domain knowl-
edge as the configuration process ensures its consistency dur-
ing parsing, and (3) the semantic disambiguation of terms.

As our aim is to support the translation of informal natu-
ral language business specifications into formal models, we
demonstrate our approach on an example from the business
domain. The example business specification is defined us-
ing the Semantics of Business Vocabulary and Business Rules
(SBVR) [OMG, 2008], which we use as our semantic model.
SBVR and the example are discussed in more detail later.

The remainder of this paper is organised as follows: Sec-
tion 1.1 provides a brief introduction to SBVR and its con-
cepts, Section 2 presents an example that will be used
throughout the paper, Section 3 describes our approach to
parsing natural language, Section 4 presents experimental re-
sults, Section 5 discusses related work, and Section 6 pro-
vides insight into future work and concludes the paper.

1.1 Brief overview of SBVR
The Semantics of Business Vocabulary and Business Rules
(SBVR) is a standard developed by the Object Management
Group (OMG) to facilitate the transfer of business knowledge
between business people and the technical experts respon-
sible for developing information systems for them [OMG,
2008]. It encompasses two aspects: (1) a meta-model for rep-
resenting vocabularies, facts, and rules in a machine process-
able format, and (2) a controlled English notation for repre-
senting the same vocabularies, facts, and rules more suited to
people. Therefore, SBVR supports the exchange of business
specifications between both organisations and software tools.

Matt Selway, Wolfgang Mayer, Markus Stumptner 63

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

The SBVR meta-model standardises concepts for the defi-
nition of business vocabularies (i.e. sets of concepts relevant
to a particular organisation or business domain) and rules re-
lating to those vocabularies. It is based on formal logic; pri-
marily first-order predicate logic with an extension in modal
logic (necessity, possibility, permissibility, and obligation).

Within the meta-model, vocabularies are defined on the ba-
sis of Meanings and Representations. They consist of sets of
interrelated object types, individual concepts, and fact types.
A distinction is made between a meaning and its representa-
tion, allowing a single concept to be represented with multiple
words (possibly in different languages), images, or sounds.

The semantic structure of business rules are formed by
the Logical Formulations aspect of the meta-model. This in-
cludes concepts for first-order logical operators (e.g. conjunc-
tion, disjunction, implication), quantification (e.g. universal,
existential, exactly n), and modal operators (e.g. necessity,
obligation). These concepts allow business people to define
structural and operative rules. Structural rules include such
rules as cardinality constraints on the relations between con-
cepts and cannot be violated, while operative rules may be
violated by a person involved in conducting the business.

2 Motivating Example
This section introduces an example that identifies the limita-
tions of existing approaches and that will be used in the re-
mainder of this paper to demonstrate our approach. It is an
extract of the EU-Rent business specification included in the
SBVR specification [OMG, 2008, Annex E].

EU-Rent is a fictional car rental company with a global
presence. The example business specification defines domain
specific vocabulary and rules for EU-Rent, its structure, and
how it conducts its business. Figure 1 shows a portion of the
vocabulary related to the organisational structure of EU-Rent.
The following is a structural rule, based on this vocabulary,
that defines a cardinality constraint on the part-of relationship
between a ‘branch’ and a ‘local area’.

(1) Each branch is included in exactly one local area.

rental organisation unit
Definition: organisational unit that operates part of EU-Rent’s
car rental business

rental organisation unit having rental responsibility
Definition: . . .the rental organisation unit is responsible for the
operation of customer-facing rental business

rental organisation unit having area responsibility
Definition: . . .the rental organisation unit includes organisation
units for which it has the responsibility to coordinate operations
and ensure resources

local area
Definition: rental organisation unitthat has area responsibility

branch
Definition: rental organisation unitthat has rental responsibility

branch is included in local area
Synonymous Form: local area includes branch

Figure 1: Business vocabulary used by the example rule with
SBVR markup: object types, fact types, andkeywords.

Although quite simple, this example demonstrates a num-
ber of important concepts such as nouns, verbs, and quanti-
fiers. The approach of [Kleiner et al., 2009] processes the
sentence by executing a series of model transformations that
result in a UML model of the text, using SBVR as an interme-
diate model between the natural language text and UML. The
steps up to the creation of the SBVR model are as follows:

1. a text-to-model transformation creates an Ordered
Words model that annotates the words with their posi-
tion in the sentence

2. a model-to-model transformation creates a Labelled
Words model by labelling each word with their possible
syntactic categories using a lexicon (model)

3. configuration is used to transform the Labelled Words
model into a Syntax model, performing syntactic and
grammatical analyses, and

4. a model-to-model transformation creates an SBVR
model from the Syntax model

Performing this process on the example sentence would re-
sult in the Syntax and SBVR models displayed in Figure 2.

This approach provides a flexible, non-deterministic, and
extensible method of parsing natural language [Kleiner et al.,
2009]; however, it has several issues, chiefly: (1) it is pri-
marily syntactic, (2) it requires a detailed lexicon, and (3) the
mapping to SBVR can be problematic, e.g. in the handling of
‘local area’ two correct interpretations can be conceived.

The first is the main issue as, although [Estratat and
Henocque, 2004] suggest that configuration can combine syn-
tactic and semantic analysis, it is primarily used for generat-
ing syntactic parse trees. As a result, a sentence could be syn-
tactically correct but not meaningful and, therefore, must be
linked to the semantics somehow (e.g. through a model trans-
formation to SBVR like that used in [Kleiner et al., 2009]).

Although [Kleiner et al., 2009] introduce some semantic
elements into their model (i.e. each category can be linked
to a basic element of the SBVR model1), they do so only to
ease the transformation to the SBVR model. The existence
of the SBVR elements does not provide any semantic guaran-
tees. Therefore, semantic inconsistencies need to be resolved
either during the transformation to SBVR, making it much
more complex, or by post-processing of the SBVR model.
However, this seems unnecessary if it can be achieved during
the configuration process itself.

The requirement of a detailed lexicon is more an issue
for our target application area than with the parsing method
itself. In the context of businesses creating and maintain-
ing their own sets of domain specific business vocabularies
and business rules, we do not see business people defining
detailed lexicons with linguistic information such as voice,
genre, transitivity, etc. In this application area, the business
vocabulary is more like a glossary containing domain specific
words and their definitions, like that of Figure 1, rather than
a dictionary containing detailed lexical information. There-
fore, an approach that requires less linguistic information to
be defined is required for our purposes.

1This is not shown in Figure 2a for readability.

64 Matt Selway, Wolfgang Mayer, Markus Stumptner

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

(a) (b)

Figure 2: Example Syntax model (a) and SBVR model (b) generated by the process of [Kleiner et al., 2009]

Finally, there are some problems with mapping the syntac-
tic tree to the SBVR semantics. Consider how the term ‘local
area’ is handled in the above example. For simplicity, ‘local
area’ is a single noun, which maps directly to the object type
‘local area’ in SBVR. However, in reality it would be consid-
ered a noun phrase, where the term ‘local’ would be used in
an adjective sense and ‘area’ would be the noun. This would
map to the object type ‘area’ with the characteristic ‘being lo-
cal’. However, in the vocabulary of EU-Rent, ‘local area’ is a
single concept and should not be decomposed in this way.

It seems a simple problem to fix: the term ‘local area’ could
be included as a noun in the lexicon, which is what would
happen if a business were defining its vocabulary. However,
unless the individual terms ‘local’ and ‘area’ were removed,
which could affect the processing of sentences in other con-
texts, it would result in two correct parses of the sentence:
one in which ‘local area’ is treated as a simple noun and one
treating it as a noun phrase. The transformation to the SBVR
model would not resolve this issue either, as both forms have
a valid mapping. Therefore, the user would have to select
the preferred mapping or the SBVR model would have to be
processed to see if either one or the other has already been
created. Either way it makes the process more cumbersome,
whereas we propose that by configuring the SBVR model di-
rectly, this problem would be avoided (as long as only one or
the other has been specified in the vocabulary).

It could be argued that this problem is a quirk of the SBVR
model as other semantic representations with a structure more
similar to the parse tree would have more direct mappings.
However, it is an important issue as SBVR has gained trac-
tion in our application domain in recent years [Nemuraite et
al., 2010; Sukys et al., 2012] and is an important part of the
OMG’s Model-Driven Architecture [OMG, 2008]. Moreover,

we will show that our proposed approach does not reduce the
flexibility with respect to the semantic representation used.

3 Parsing Process
In order to overcome these limitations we propose the use of
knowledge-based configuration on the semantic representa-
tion directly, rather than configuring a syntactical parse tree.
In this way we maintain the benefits of parsing using config-
uration, while ensuring semantic consistency and removing
a step from the process. Furthermore, this approach remains
agnostic with respect to the semantic representation used; al-
though we utilise the SBVR meta-model in this paper.

In order to avoid complex syntactical analysis, which is a
difficult problem in itself, we use an approach inspired by
Cognitive Grammar, a theory of grammar from the field of
Cognitive Linguistics [Langacker, 2008]. Cognitive Gram-
mar takes a holistic view of language, combining syntax, se-
mantics, and pragmatics into a unified whole. In particular,
our approach is based on that of [Holmqvist, 1993], which
provides a computational model of Cognitive Grammar.

In Cognitive Grammar, the meaning of an expression is
understood by combining the semantic structures evoked by
its constituent expression into a unified structure; a process
called semantic accommodation in [Holmqvist, 1993]. Evok-
ing the semantic structure of an expression is a relatively sim-
ple endeavour as the two are linked; therefore, a semantic
structure is evoked by looking up the expression in a lexicon.
As a result, our method is able to do away with traditional
syntactic analysis for a much simpler model, leaving most of
the effort in understanding the expression to be performed by
the accommodation process. With the aim of combining se-
mantic structures into a composite structure based on the al-
lowable relationships between them, the accommodation pro-

Matt Selway, Wolfgang Mayer, Markus Stumptner 65

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

cess is analogous to a configuration task.
The syntactic analysis and the accommodation process us-

ing configuration are detailed in the following sections. These
two processes are performed iteratively with the first using the
expectations, or placeholders in our case, to propose possible
parses of the sentence, and the second combining the seman-
tic aspects of the suggested parses into a complete structure.
The result is a progressively more detailed and complete set
of domain knowledge containing the concepts, their defini-
tions, and their associated rules.

3.1 Syntactic Analysis
The syntactic analysis of our approach is primarily the evo-
cation of semantic structures from the lexicon, taking into ac-
count grammatical dependencies. For example, in the exam-
ple expression, there are two quantifiers ‘each’ and ‘exactly
one’. If only the evoked semantic structures were known, the
configurator would not know which quantifier applies to what
concept, yet we know that ‘each’ is supposed to apply to the
term ‘branch’ and ‘exactly one’ to ‘local area’.

Traditionally, these dependencies are handled by the rela-
tionships between categories (as shown in Figure 2a). How-
ever, as this leads to complex lexicons that are not suitable
for our target application and require complex processing to
produce, we account for these dependencies using so called
grammatical expectations [Holmqvist, 1993]. Grammatical
expectations are a relatively simple model of grammatical
dependency that identify locations in an expression where
other expressions are “expected” to fill. Moreover, grammat-
ical expectations are a good match for SBVR-based seman-
tics, as they are similar to the placeholders of fact types. In
[Holmqvist, 1993], only left and right expectations were in-
troduced, which search to the left or right for another expres-
sion. We also introduced internal expectations, which search
within the span of the expression, in order to more easily deal
with SBVR fact types with more than two placeholders.

This model defines lexicon and lexical entries as follows.
Definition 1 (Lexicon). A lexicon is a tuple

l = (E,LE, lookup)
where E is a set of expressions, LE is a set of lexical entries,
and lookup : E → 2LE\∅
Definition 2 (Lexical Entry). A lexical entry is a tuple

le = (e, ss,GE, typeGE)
where e is an expression of one or more words, ss is its as-
sociated semantic structure, GE is a set of grammatical ex-
pectations, and typeGE : GE → {left, internal, right}
assigns a type to each grammatical expectation ge ∈ GE.

This definition is purposefully generic with respect to the
form the semantic structure takes. While we use the SBVR
meta-model, other semantic representations could be used.
As a result, our approach remains flexible in terms of vary-
ing the model being configured, as in [Kleiner et al., 2009].

The lexicon is partly predefined. For example, words with
explicit semantics in SBVR, such as those for quantifications,
logical operators, etc., are explicitly defined as certain ex-
pressions, semantic structures, and grammatical expectations.
Domain specific terms are provided by the vocabulary of a
business specification, e.g. a glossary of terms, which have

their semantic structures and grammatical expectations deter-
mined by the representation of object types and fact types in
SBVR. In our application domain, the vocabulary is provided
by business people, which drives our need for a simple lexi-
con with minimal information.

Using grammatical expectations, the syntactic analysis is
performed incrementally, when an expression is found to fill
an expectation (i.e. the expectation is said to catch the ex-
pression [Holmqvist, 1993]) a possible parse is proposed and
kept in a suggestion list. Since the number of suggestions
increases rapidly, the suggestion list is kept short by order-
ing the suggestions using heuristics to identify the best parse
and pruning off any suggestions over a limit and/or that are
not considered good candidates [Holmqvist, 1993]. The met-
rics used by the heuristics include: (1) catching distance, the
linear distance to the word (or combination) filling a place-
holder; (2) binding energy, the summation of all catching dis-
tances in a suggestion; (3) local coverage, the ratio of words
in the suggestion to words spanned by the suggestion; and
(4) global coverage, the ratio of words in the suggestion to all
words of the expression encountered up to the current point.

The suggestion list and suggestions are defined as follows.
Definition 3 (Suggestion List). A suggestion list SL is an
ordered set of suggestions, where each suggestion s ∈ SL is
a tuple s = (SLE,C, be, lc, gc) such that:
• SLE is a set of lexical entries or previous suggestions

included in s
• C is a set of tuples

catch = (sle1 ∈ SLE, ge, sle2 ∈ SLE, cd)
that associate a grammatical expectation, ge, of the
catching lexical entry or suggestion, sle1, to the lexical
entry or suggestion that it catches, sle2, with the catch-
ing distance, cd.
• be = ∑

c∈C c.cd is the binding energy of the suggestion,
• lc is the local coverage of the suggestion,
• gc is the global coverage of the suggestion
The order for each s1, s2 ∈ SL is determined by:
s1 � s2 ⇐⇒ (s1.gc, s1.lc, s1.be) ≤l (s2.gc, s2.lc, s2.be)

Based on the preferences that: the best parse should cover
the entire sentence; suggestions should have no holes; and,
words should be captured at the shortest distance.

Due to the recursive compositional nature of the sugges-
tions, i.e. each x ∈ SLE is a lexical entry or another sug-
gestion, the catching information constitutes a non-traditional
parse tree. Figure 3 shows an example of a parse tree pro-
duced by our syntactic analysis compared to the traditional
parse tree equivalent to Figure 2a. The parse tree and the
partial SBVR model (i.e. the semantic structures) of the sug-
gested parse are provided to the semantic accommodation
process to be configured into a complete model.

The general algorithm for the syntactic analysis is as fol-
lows, for each word in the expression:

1. Retrieve the entry for the current word from the lexicon
2. If the current word has any left placeholders, for each

suggested parse in the suggestion list:

66 Matt Selway, Wolfgang Mayer, Markus Stumptner

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

(a) (b)

Figure 3: A traditional parse tree (a) and one created by our
analysis (b)

(a) catch the closest word (or word combination) to the
left of the current word

(b) add the new suggested parse to the suggestion list
3. Else, for each suggested parse in the suggestion list, if

the previous word or combination has any internal place-
holders and the current word is within its span:
(a) catch the current word with the internal placeholder
(b) add the newly suggested parse to the suggestion list

4. Else, for each suggested parse in the suggestion list, if
the previous word or combination has any right place-
holders:
(a) catch the current word with the right placeholder
(b) add the newly suggested parse to the suggestion list

5. Update the heuristics, distances between words, order
the suggestion list, and cull excess entries

6. Provide newly suggested parses to the semantic accom-
modation/configuration process

7. Remove suggestions that failed accommodation
An example of the syntactic analysis after a complete parse

of the example sentence is displayed in Figure 4.

Figure 4: Lexical analysis of the rule ‘Each branch is included
in exactly one local area.’ Asterisks represent the grammati-
cal expectations, hexagons represent the catching word, rect-
angles represent the caught word, catching distance is shown
above each line.

3.2 Semantic Accommodation/Configuration
Parses suggested by the syntactic analysis are sent to the
semantic accommodation process to determine whether or
not they are admissible in the (SBVR) semantics. Rather
than the numerous processes for accommodation discussed
in [Holmqvist, 1993], we utilise knowledge-based configura-
tion to perform the accommodation. Specifically, component-
oriented configuration is used, which combines advantages
from connection-, resource-, and structure-based approaches
[Soininen et al., 1998; Stumptner, 1997]. Moreover, the
object-oriented nature of component-oriented configuration
lends itself more easily to that of the SBVR meta-model.

Using the terminology of [Soininen et al., 1998], the SBVR
meta-model constitutes the configuration model knowledge of
our approach, i.e. it defines the types of entities, properties,
and rules that specify the set of correct configurations. It fol-
lows that an SBVR (terminal) model constitutes the configu-
ration solution knowledge or (possibly partial) configuration.
Lastly, the parse tree created by the lexical analysis consti-
tutes the requirements knowledge, i.e. additional constraints
on the configuration that are not strictly part of the configura-
tion model. For example, the SBVR meta-model may allow
either quantification to be applied to either object type in the
example rule, however, the grammatical dependencies require
that ‘each’ be applied to ‘branch’ and ‘exactly one’ to ‘local
area’ for the correct interpretation of the sentence.

Since the SBVR (meta-)model is defined using ECore, the
Eclipse Modelling Framework 2 implementation of EMOF
from the MOF specification of the OMG [OMG, 2006],
we first discuss its mapping to the configuration ontology
of [Soininen et al., 1998]. The configuration ontology de-
fines standard concepts for representing the different aspects
of configuration knowledge including: taxonomy, attributes,
structure, topology, and constraints. An example of the map-
ping for SBVR is displayed in Figure 5. It focuses on the con-
figuration model knowledge, with some example component
individuals. For simplicity, port individuals are not included
in the figure. The mapping is by no means complete, but pro-
vides a link between the meta-model representation and the
representation used for the configuration task.

Taxonomy
ECore allows classification hierarchies to be defined through
the use of the concepts EClass and EObject, and the rela-
tions eSuperTypes and eClass. The concept EClass gener-
ically represents a type and therefore could be mapped to
Configuration Type; however, ECore does not dis-
tinguish the sub-types Component Type, Port Type,
Resource Type, and Function Type in the same
manner as [Soininen et al., 1998]. Therefore, it is more
appropriate to map instances of EClass to Component
Types. Other ECore concepts map to the other configuration
types. Therefore, only component types have a classification
hierarchy; the others are made direct subtypes of their appro-
priate configuration type (i.e. Attribute Type, etc.).

Sub-types and super-types in ECore are represented by eS-
uperTypes. This relation defines the direct super-types of an

2http://www.eclipse.org/modeling/emf/

Matt Selway, Wolfgang Mayer, Markus Stumptner 67

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Figure 5: Fragment of the configuration model derived from the ECore mapping of the SBVR meta-model.

EClass and, therefore, maps to the isa relation. Moreover,
multiple inheritance is allowed in both representations.

In ECore, an EClassmay be abstract, i.e. cannot have any
instances. However, in the context of configuration, it makes
sense to relax this definition to allow partial information of a
configuration, such as in [Soininen et al., 1998]. Therefore,
abstract and non-abstract (i.e. concrete) types in ECore are
mapped to abstract and concrete classes in the ontology using
the appropriate Abstraction Definition.

Instances of EObject represent Individuals from the
ontology. In ECore, these are associated to their type by
eClass, which maps to is directly of. Moreover, since eClass
specifies the EClass of an individual, EObject necessarily
maps to Component Individual.

Attributes
Attributes in ECore are represented by the concept
EAttribute, which have a name, a type specified by eAt-
tributeType, and relations for the lower and upper bounds of
their cardinality (lowerBound and upperBound, respectively).

An eAttributeType links an EAttribute to its
EDataType, which maps to the concept Attribute
Type from [Soininen et al., 1998]. It follows that
EAttributes map to Attribute Definitions
with the appropriate Attribute Name, Attribute
Value Type (from eAttributeType), and Necessity
Definition. The value of an attribute for a specific
EObject is mapped to an Attribute with the respective
Attribute Value and Component Individual.

In ECore, attributes can have a zero-to-many cardinality,
while Necessity Definitions are restricted to exactly
one (necessary) and at most one (optional) attributes. As a
result, there exists only a partial mapping to the configuration
ontology; however, this is not a problem for the SBVR meta-

model as it only includes necessary and optional attributes.

Structure and Topology
The ontology of [Soininen et al., 1998] differentiates be-
tween Part Definitions, which specify the composi-
tional structure of components, and Port Definitions,
which specify the topological connections (either physical or
logical) between components. Part Definitions con-
stitute a direct has-part relation between components. This
relation must be anti-symmetric and anti-reflexive. Moreover,
the transitive closure of has-part defines a transitive has-
part relation, which must also be anti-symmetric and anti-
reflexive. Port Definitions have no such restriction.

In ECore, both Part Definitions and Port
Definitions are represented by the concept
EReference. An EReference may be a contain-
ment reference (for compositional relationships) and/or it
may have an eOpposite for bi-directional relationships.

While it seems intuitive to map containment and uni-
directional references to part definitions, and bi-directional
relationships to port definitions, this is not possible as ECore
does not uphold the anti-symmetric and anti-reflexive require-
ments of has-part relations. For example, the situation shown
in Figure 6, in which the transitive closure of the has-part
relations between Meaning, Representation, and Expression
are reflexive, is allowable in ECore but not the configuration
ontology. To determine those EReferences that could be
mapped to part definitions would require analysis of the meta-
model; instead, we map all EReferences to ports. As a re-
sult, we effectively use ports as a generalised structural rela-
tionship similar to that described in [Hotz and Wolter, 2013].

A Port Definition requires a Port Name, a
Possible port type set, and a Cardinality.
Similar to EAttribute, EReferences have a name,

68 Matt Selway, Wolfgang Mayer, Markus Stumptner

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Figure 6: Transitive relationships in the SBVR meta-model

a lowerBound, and an upperBound. Therefore, an
EReference maps to a Port Definition, with the
name mapping to the Port Name, and the lowerBound
and upperBound are mapped to the Cardinality. Port
Types and their Compatibility Definitions are
created for each EReference to ensure the associated ports
can only connect to each other correctly.

When two EObjects are associated to one an-
other through an EReference the appropriate
Port Individuals of the equivalent Component
Individual are connected-to each other.

Constraints
Arbitrary constraints in ECore are specified using anno-
tations on model elements, written in some constraint
language. These annotations are mapped to Constraint
Instances and their corresponding Constraint
Expressions. Special cases of constraints, particularly
Property Definition and its sub-types (Attribute
Definition, etc.), are utilised by previous mappings.

The constraints defined in our configuration model come
from the SBVR specification. An example is shown in Fig-
ure 6 in that, the ‘has meaning’ relation between an ‘Expres-
sion’ and a ‘Meaning’ is allowed if and only if the ‘Meaning’
is connected to the ‘Expression’ through a ‘Representation’
and the ‘has representation’ and ‘has expression’ relations.

In the configurator used by our implementation the differ-
ent aspects of the configuration knowledge are mapped to a
generative CSP (or GCSP) as described in [Stumptner et al.,
1998]. This particular approach differs in its definition of
some of the previously discussed concepts of [Soininen et al.,
1998] in the following respects:
• Non-leaf nodes in the taxonomy are assumed to be ab-

stract; therefore, concrete component types that have
sub-types are split into two types: an abstract super-type
and a concrete sub-type.
• Ports are specified as necessary or optional; therefore,
Port Definitions with higher cardinalities result
in multiple ports that are then grouped into port sets,
which allow quantitative reasoning over their members.

By configuring the SBVR models directly, we perform
configuration of the concepts in a business specification rather
than a syntactic parse tree as in [Kleiner et al., 2009]. This
results in an iteratively more detailed domain model, where
new domain knowledge is taken into account each time a new
sentence is processed. In addition, inconsistencies can be de-
tected more easily than by reprocessing the model after new
knowledge is added through a model transformation. Finally,
the mapping to SBVR is simplified as the lexicon maps di-
rectly to the semantics, rather than an intermediate syntactic
model. This solves the issue of multiple parse trees with cor-
rect mappings to SBVR as, for example, the parse of ‘Each

branch is included in exactly one local area’ where ‘local
area’ is considered a noun phrase would be inconsistent with
the domain knowledge, while the parse where ‘local area’ is
considered a noun would be consistent.

4 Experimental Results
We present the results of early experiments on the configura-
tion of domain knowledge for NLP. We performed multiple
tests of the example structural rule (1) and gathered statistics
on the performance of the configurator in configuring these
kinds of models. The results are summarised in Table 1.

The configurations produced were evaluated by hand for
correctness. In each case the configuration was correct (cor-
responding with that shown in Figure 2b). The high num-
ber of variable assignments are due to relationships in the
SBVR meta-model with cardinalities higher than one produc-
ing multiple ports in the configuration model; therefore, most
port assignments are to the unconnected state.

It is interesting to note the correlation between the (mini-
mum) number of backtracks and the number of components
generated. This is due to the nature of the SBVR meta-model
in two respects: (1) it contains a large number of relations
with a cardinality of zero-to-many, and (2) it uses reified re-
lations, which means that, in terms of configuration, each re-
lation is represented as a component.

To prevent spurious connections between components,
ports representing a zero-to-many relation are first set to the
unconnected state; therefore, they are only connected to a
component if being unconnected violates some constraint,
causing a backtrack. Furthermore, the use of reified relations
means that new relation components need to be created, even
if it results in connecting two existing (non-relation) compo-
nents. Therefore, in the optimal search of only connecting
existing (non-relation) components, there will always be the
same number of backtracks as generated components.

The higher number of backtracks in other configurations
of the example are the result of the non-deterministic solver
attempting variable assignments in a suboptimal order. This
has a negative impact on performance. However, this could be
avoided by providing SBVR specific procedural strategies for
guiding the search [Stumptner et al., 1998; Hotz and Wolter,
2013]. For example, ordering heuristics can be provided to
change the order in which different component types or port
types are assigned. Moreover, the search space could be re-
duced by preventing the creation of certain component types.
For example, we assume a sentence is to be interpreted in the
context of a provided vocabulary, hence we could prevent the

Sentence (1)
Constraints 197
Variable Assignments 5162
Min. # Backtracks 6
Max. # Backtracks 25
Ave. # Backtracks 17
Components Generated 6

Table 1: Performance statistics of the configuration process

Matt Selway, Wolfgang Mayer, Markus Stumptner 69

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

creation of new object types, fact types, and other concepts
related to the vocabulary aspects of the SBVR meta-model.

We are in the process of implementing a larger example,
a portion of which assigned 4812 variables, generated 5 new
components, and took 49 backtracks to do so. This empha-
sises the need for heuristics to help guide the search.

5 Related Work
Previous work in using configuration for natural language
parsing has translated property grammars into a configuration
model [Estratat and Henocque, 2004]. Using this approach,
a simple context free-grammar (anbn) and a subset of French
were processed. This approach focuses primarily on the syn-
tactic aspect of generating parse trees. Although the possi-
bility of incorporating semantics is suggested in [Estratat and
Henocque, 2004], none were incorporated in the processing
of the natural language subset.

The approach of [Estratat and Henocque, 2004] was
adapted to English and a Model-Driven Engineering environ-
ment in [Kleiner et al., 2009]. Although their focus remains
on the syntactic aspect of generating parse tress, SBVR se-
mantics are partially taken into account by associating ele-
ments of the parse tree with SBVR types. This information
is used to simplify the model transformation; however, the
domain knowledge included in the SBVR model is not taken
into account and, therefore, the process is not truly semantic.

Other approaches have used standard CSP translations of
Dependency Grammars [Duchier, 1999] and, more recently,
Property Grammars [Duchier et al., 2012] in order to process
natural language. However, both of these approaches focus
on syntactic parsing, while we aim to incorporate semantics
and domain knowledge directly into the parsing process.

6 Conclusions and Future Work
In this paper we have presented an approach to natural lan-
guage processing that utilises configuration of domain knowl-
edge to determine the validity of an expression. In effect, this
performs natural language understanding, at least in terms of
the semantic representation used. Moreover, we have demon-
strated how techniques from Cognitive Linguistics can be
combined with a translation of the SBVR meta-model (the se-
mantic representation in our case) into a configuration prob-
lem in order to achieve this natural language understanding.

Our approach is novel in its combination of techniques
from Cognitive Linguistics and configuration, and in that it
performs configuration directly on the semantics of the do-
main knowledge. This is in contrast to previous approaches
that use configuration or CSPs for natural language process-
ing, as they tend to focus only on the syntactic aspect of gen-
erating a parse tree. As a result, our approach benefits from
a simplified lexicon (important to our application in the busi-
ness domain), improved mapping to the target semantics, and
the semantic disambiguation of terms during processing.

The presented experimental results demonstrate the feasi-
bility of our approach. In its current form, however, the con-
figuration of the SBVR model can be inefficient and, there-
fore, future work will look at providing heuristics in order
to ensure better performance in the configuration process. In

addition, a more thorough evaluation of the process will be
performed over larger examples in order to determine the ef-
fect of growing domain knowledge on the process.

References
[Duchier et al., 2012] Denys Duchier, Thi-Bich-Hanh Dao,

Yannick Parmentier, and Willy Lesaint. Property grammar
parsing seen as a constraint optimization problem. In Proc.
Formal Grammar 2010/2011, LNCS 7395, pages 82–96,
2012.

[Duchier, 1999] Denys Duchier. Axiomatizing dependency
parsing using set constraints. In Proc. Sixth Meeting on
Mathematics of Language, pages 115–126, 1999.

[Estratat and Henocque, 2004] Mathieu Estratat and Laurent
Henocque. Parsing languages with a configurator. In Proc.
ECAI’2004, volume 16, pages 591–595, 2004.

[Holmqvist, 1993] K. B. I. Holmqvist. Implementing cogni-
tive semantics: image schemata, valence accommodation
and valence suggestion for AI and computational linguis-
tics. PhD thesis, Dept. of Cognitive Science Lund Univer-
sity, Lund, Sweden, 1993.

[Hotz and Wolter, 2013] Lothar Hotz and Katharina Wolter.
Beyond physical product configuration configuration in
unusual domains. AI Communications, 26:39–66, 2013.

[Kleiner et al., 2009] M. Kleiner, P. Albert, and J. Bézivin.
Configuring models for (controlled) languages. In Proc.
ConfWS’09, pages 61–68, 2009.

[Langacker, 2008] R. W. Langacker. Cognitive grammar: a
basic introduction. Oxford University Press, Oxford, New
York, 2008.

[Nemuraite et al., 2010] Lina Nemuraite, Tomas Skersys,
Algirdas Sukys, Edvinas Sinkevicius, and Linas Ablon-
skis. VETIS tool for editing and transforming SBVR
business vocabularies and business rules into UML&OCL
models. In Proc. ICIST 2010, pages 377–384, 2010.

[OMG, 2006] OMG. Meta Object Facility (MOF) Core
Specification. Object Management Group, 2006.

[OMG, 2008] OMG. Semantics of Business Vocabulary and
Business Rules (SBVR), v1.0. Object Management Group,
2008.

[Soininen et al., 1998] Timo Soininen, Juha Tiihonen, Tomi
Männistö, and Reijo Solunen. Towards a general ontology
of configuration. AI EDAM, 12(04):357–372, 1998.

[Stumptner et al., 1998] Markus Stumptner, Gerhard E.
Friedrich, and Alois Haselböck. Generative constraint-
based configuration of large technical systems. AI EDAM,
12(04):307–320, 1998.

[Stumptner, 1997] Markus Stumptner. An overview of
knowledge-based configuration. AI Communications,
10(2):111–125, 1997.

[Sukys et al., 2012] Algirdas Sukys, Lina Nemuraite, Bro-
nius Paradauskas, and Edvinas Sinkevicius. Transforma-
tion framework for SBVR based semantic queries in busi-
ness information systems. In Proc. BUSTECH 2012, pages
19–24, July 22-27 2012.

70 Matt Selway, Wolfgang Mayer, Markus Stumptner

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Abstract

Literature has recently conceptualized five
capabilities that a sales configurator should deploy
in order to help avoid the product variety paradox,
namely the risk that offering more product variety
and customization to the market paradoxically
results in a loss of sales. However, no studies have
investigated the effect of such capabilities on the
value that users derive from the experience of
customizing their own products. To help narrow
this research gap, in the present work we develop a
number of hypotheses about the positive impact of
such capabilities on the hedonic and creative value
obtained by potential customers through the
customization experience. We then test the
hypothesized relationships and find empirical
support for all of them.

1 Introduction

Sales configurators are software applications that support

firms in identifying the complete and consistent commercial

description of the product variant that best fits the

customers’ requirements among the company’s offer [Forza

and Salvador, 2008; Peng et al., 2011]. The functions of a

sales configurator include presenting the company’s product

space, meant as the set of products offered [Tseng and

Piller, 2003], and preventing inconsistent or unfeasible

solutions from being defined [Franke and Piller, 2003; Forza

and Salvador, 2008].
Drawing upon prior research on sales configurators and

customer decision processes, literature [Trentin et al., 2013]
has recently distilled five capabilities that a sales
configurator should deploy in order to help avoid the
product variety paradox. This is the risk that offering more
product variety and customization to the customer, in an
attempt to increase sales, paradoxically results in a loss of
sales [Salvador and Forza, 2007].

However, no studies have analyzed the effect of these
capabilities on the value that potential customers may derive
from the experience of customizing their own products.
Such a subjective value is posited by previous literature as
increasing the customers’ willingness to pay for mass-

customized goods [Franke and Schreier, 2010; Franke et al.,
2010], and therefore it represents an important lever for
mass customizers aiming at increasing their profitability. To
help narrow this research gap, the present work develops
and tests hypotheses about the positive impact of the
abovementioned sales configurator capabilities on the value
the customization experience provides to the potential
customers.

2 Theoretical background and conceptual

development

2.1 The value of the customization process

Consumer research has long recognized that shopping
involves not only instrumental outcomes related to the
merits of the goods or services acquired, but also
experiential outcomes [Holbrook and Hirschman, 1982;
Babin et al., 1994]. The latter are emotional responses to the
shopping experience that, when positive and rewarding, let
customers obtain greater value from their shopping time
[Holbrook and Hirschman, 1982; Babin et al., 1994].
Greater perceived value, in turn, makes customers more
willing to buy a product or pay a higher price for it [Baker et
al., 1992; Babin et al., 1994; Franke and Schreier, 2010].

Experiencial value has been shown to influence
customer’s purchasing behaviour not only in the case of
standard items, but also when products can be configured by
using a Web-based sales configurator. Specifically,
literature has unveiled that the value elicited by the
configuration experience carry over to the evaluation of the
self-configured product and increment the customer’s
willingness to pay [Franke and Schreier, 2010; Franke et al.,
2010; Merle et al., 2010]. In particular, two types of
experiencial values have been linked with the process of
self-configuring a product, namely hedonic value and
creative achievement value [Merle et al., 2010].

Hedonic value
Hedonic value is defined as the value acquired from the
experience’s capacity to meet needs related to enjoyment,
fun, or pleasure [Merle et al., 2010]. In particular, with
regard to a purchase situation, hedonic value reflects the
consumers’ appreciation for the shopping experience in

The effect of sales configurator capabilities on the value perceived by the customer

through the customization process

Elisa Perin
1
 and Alessio Trentin and Cipriano Forza

University of Padova, Italy
1
perin@gest.unipd.it

Elisa Perin, Alessio Trentin, Cipriano Forza 71

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

itself, regardless of any instrumental value of the purchased
product [Babin et al., 1994].

The importance of fulfilling the customer’s needs for
enjoyment, fun, or pleasure through the shopping experience
has long been advocated by the marketing literature [e.g.
Hirschman and Holbrook, 1982; Babin et al., 1994; Childers
et al., 2001]. For example, literature has uncovered that
instilling those feelings in the customer is a way to foster
unplanned shopping decisions [Babin et al., 1994],
repurchase intentions [Jones et al., 2006; Scarpi, 2012] or
the use of online forms of shopping [Childers et al., 2001].

Similar findings have also been reported in the mass-
customization literature. Recent studies have uncovered that
consumers configuring their own products are likely to
experience process enjoyment [Franke and Schreier, 2010;
Merle et al., 2010]. These feelings can derive, for example,
from learning one’s own preferences by using the
configuration process and/or from playing an active role in
the design of a good [Franke and Schreier, 2010].
Noteworthy, these mechanisms are not inflenced by the
characteristics of the products eventually configured, rather
they result from the characteristics of the configuration
process itself. For this reason the hedonic benefit is said to
be “process-oriented” [Franke and Schreier, 2010].

Creative achievement value
Creative achievement value is defined as the value acquired
by the customer from the feeling of accomplishment related
to the creative task of codesigning [Merle et al., 2010]. The
elicitation of this type of value has also been referred to as
the “I designed it myself” effect [Franke et al., 2010]. Here
the term “design” is used as including the configuration of a
product within a predefined solution space [Franke et al.,
2010].

The concept of creative achievement value finds its
theoretical support in the psychology literature. When
people successfully complete a challenging task by their
own efforts, they feel a positive emotion of self-reward,
namely, pride [Weiner, 1985; Lea and Webley, 1997]. In
other terms, when someone attains an outcome that signals
his/her success in dealing with a challenge, s/he feels pride
[Weiner, 1985; Franke et al., 2010]. For example, when one
does a complex Jigsaw puzzle, a favourable outcome of the
process (i.e. having the puzzle completed) constitutes a
positive feedback on one’s own competences [Schreier,
2006]. This, in turn, gives the individual a strong feeling of
pride for having done it oneself [Schreier, 2006].

The feeling of pride has also been studied with relation
to the product customization task. The completion of such a
task has been shown to give customers a sign of their
competence and effectiveness in creating something, thus
eliciting feelings of pride “of authorship” [Schreier, 2006].
This happens because, when faced with a configurable
product instead of a standardized product, the customer
perceives the shopping experience as being more difficult
[Franke et al., 2010]. Therefore, a favourable outcome to the
configuration experience (i.e. a customized product that fits
the customer’s wants) embodies one’s success in
overcoming a challenge through the investment of personal

efforts, time, and attention [Franke et al., 2010]. As the
favorableness of the outcome of the experience is a
prerequisite for the user’s perception of pride, the creative
achievement benefit is said to be “output-oriented”
[Schreier, 2006].

2.2 Sales configurator capabilities to improve

customers’ perceived value through the

customization process

In the following subsections we argue that five capabilities,
identified by previous research as key in avoiding the
product variety paradox [Trentin et al., 2013], also allow a
sales configurator to increase the value perceived by a
customer through the configuration process. These
capabilities are: benefit-cost communication, user-friendly
product-space description, easy comparison, flexible
navigation, focused navigation capabilities (see Table 1).

Capability Definition

Benefit-cost
communication

The ability to effectively communicate the
consequences of the available choice options
both in terms of what the customer gets
(benefits) and in terms of what the customer
gives (monetary and nonmonetary costs)

User-friendly
product-space
description

The ability to adapt the product space
description to the needs and abilities of
different potential customers, as well as to
different contexts of use

Easy
comparison

The ability to minimize the effort required of a
potential customer to compare previously
created product configurations

Flexible
navigation

The ability to minimize the effort required of a
potential customer to modify a product
configuration that he/she has previously
created or is currently creating

Focused
navigation

The ability to quickly focus a potential
customer’s search on a product space subset
that contains the product configuration that
best matches his/her idiosyncratic needs

Table 1: sales configurator capabilities (Trentin et al., 2013)

Impact of sales configurator capabilities on hedonic
value

Benefit-cost communication capability
When a sales configurator has high benefit-cost
communication capability, during the configuration task the
customer is given pre-purchase feedbacks on the effects of
the available choice options [Trentin et al., 2013]. This is
done, for example, by explaining what potential needs a
given choice option contributes to fulfill and which is the
price for such an option.

One of the product benefits customers are typically
interested in is the aesthetic or, more in general, the
sensorial aspect of the product s/he is considering for
purchase [Li et al., 2001; Fiore et al., 2005]. A sales
configurator with high benefit-cost communication
capability is able to convey these sensorial aspects, for
example through 360° product representation, the presence
of sound recording, or virtual try-on technologies [Fiore et
al., 2005]. This allows customers to understand whether the

72 Elisa Perin, Alessio Trentin, Cipriano Forza

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

sensorial aspects of the configured product fit their needs.
At the same time users are also allowed getting in closer
contact with the company’s offer through their senses,
which is a need customers generally have while shopping
[Hirschman and Holbrook, 1982]. When the shopping
experience involves higher sensorial relation with products,
the consumer’s fantasy and imagination are stimulated
suggesting elements of fun and playfulness [Jeong et al.,
2009]. This, in turn, increases the hedonic value that is
perceived through the shopping experience [Shih, 1998;
Fiore et al., 2005; Jeong et al., 2009].

Based on the above argument we posit that:

H1: The higher the level of benefit-cost communication
capability deployed by a sales configurator, the higher
the hedonic value perceived by the customer through
the configuration process

User-friendly product-space description capability
When a sales configurator has high user-friendly product-

space description capability, customers do not have to

process product information that is not comprehensible for

them [Alba and Lynch, 1997; Trentin et al., 2013]. This is

because the system adapts information contents according to

their needs and abilities [Trentin et al., 2013].

Since information content is customized based on one’s

needs and abilities, users perceive that the configuration

process is up to their skills. Only when potential consumers

perceive that a computer-mediated environment is

congruent with their own skills can fun and enjoyment

potentially occur [Hoffman and Novak, 1996]. Differently

the consumers either become bored (i.e., their skills exceed

the challenges) or anxious (i.e.. the challenges exceed their

skills) [Hoffman and Novak, 1996].

Moreover when the customers are able to understand the

product space characteristics, while using the sales

configurator they learn about new products released in the

market or new trends. Since learning about new products or

trends is a source of enjoyment and entertainment for

consumers [Childers et al., 2001; Parsons, 2002; Arnold and

Reynolds, 2003], this increases the hedonic value they

perceive through the configuration experience.

Therefore, we posit that:

H2: The higher the level of user-friendly product-space
description capability deployed by a sales
configurator, the higher the hedonic value perceived
by the customer through the configuration process

Easy comparison capability
When a sales configurator has high easy comparison

capability, customers do not have to rely on their limited

working memory to recover and compare configurations

they have previously created [Trentin et al., 2013]. This is

because the system supports the retrieval of saved

configurations and their comparison, for example through

their side-by-side display [Trentin et al., 2013].

The transformation of the decision from a memory-aided

to a computer-aided process increases the number of

product configurations that potential customers can explore

and add to their consideration set, given their level of mental

abilities or time availability [Alba and Lynch, 1997].

Decreased constraint to the exploration of the company’s

product space augments the users’ feeling of freedom and

spontaneity perceived during the configuration process.

These feelings in turn drive the potential customer to obtain

higher hedonic value out of the experience [Babin et al.,

1994].

Based on the above argument we posit that:

H3: The higher the level of easy comparison capability
deployed by a sales configurator, the higher the
hedonic value perceived by the customer through the
configuration process

Flexible navigation capability
When a sales configurator has high flexible navigation

capability, customers can quickly make and undo changes to

a current configuration or to previously created ones. This

can be done, for example, through the use of bookmarks that

redirect to previous steps of the configuration process

[Randall et al., 2005; Trentin et al., 2013].

As going back to previous steps of the configuration is

easier, the potential customer can conduct many trial-and-

error tests to evaluate the effects of different choices made

available by the company [Trentin et al., 2013]. In this way,

the exploration of the solution space is pursued more

actively by the customer, compared to cases where

excessive time/mental resources demands discourage

customer’s non-linear movements through the solution

space. A more active role, in turn, makes the potential

customer perceive the process as an exciting play, thus

fulfilling his/her need for enjoyment and fun [Babin et al.,

1994; Arnold and Reynolds, 2003; To et al., 2007].

Based on the above, we posit that:

H4: The higher the level of flexible navigation
capability deployed by a sales configurator, the higher
the hedonic value perceived by the customer through
the configuration process

Focused navigation capability
A sales configurator with focused navigation capability does

not force potential customers to go through and evaluate a

number of product options that they regard as certainly

inappropriate for themselves [Trentin et al., 2013]. A way to

do this is, for example, to provide starting points, that is,

product configurations that are close to the customer’s ideal

solution and that may be further customized to meet

customer’s needs more accurately [Trentin et al., 2013].

The restriction of the search only to a limited set of

product solutions that are of interest to the customer,

increases the likelihood that s/he soon finds something that

raises his/her attention and engagement. This, in turn, leaves

more time to the person to focus on what is more engaging

and stimulating for him/her, thus increasing the enjoyment

perceived during the configuration process.

Therefore, we posit that:

Elisa Perin, Alessio Trentin, Cipriano Forza 73

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

H5: The higher the level of focused navigation
capability deployed by a sales configurator, the higher
the hedonic value perceived by the customer through
the configuration process

Impact of sales configurator capabilities on creative
value

Benefit-cost communication capability
By delivering pre-purchase feedback on the effects of the

available choice options, a sales configurator with high

benefit-cost communication capability allows potential

customers to understand the value that they can derive from

these options [Trentin et al., 2013]. The learning process

enabled by such a capability makes a potential customer

more confident that the product configuration s/he has

selected is the one that best fits her/his needs within the

company’s product space [Trentin et al., 2013]. In other

terms, a configurator with high benefit-cost communication

capability makes the customers feel they have obtained the

most favorable outcome out of the configuration process

and out of the efforts that they have invested in such a

process. As pride arises when it is possible to attribute a

favorable outcome to the self [Weiner, 1985], the benefit-

cost communication capability has a role in augmenting the

feeling of pride perceived by the users through configuring

their own products. This feeling, in turn increases the

creative achievement value that the customer derives from

the customization process [Merle et al., 2010].

Based on the above arguments, we posit that:

H6: The higher the level of benefit-cost communication
capability deployed by a sales configurator, the higher
the creative value perceived by the customer through
the configuration process

User-friendly product-space description capability
By tailoring both information content and information

format to the abilities of different potential customers, a

sales configurator deploying user-friendly product-space

description capability facilitates the users’ understanding of

the solution space characteristics [Trentin et al., 2013].

Without such understanding, it would be difficult for the

customer to complete the configuration task and obtain a

product configuration that corresponds to one’s expectations

and needs [Fürstner et al., 2012; Trentin et al., 2013]. This,

in turn, would make the customer attribute a negative

outcome to the efforts employed in the process. Conversely,

when potential customers, supported by the user-friendly

product-space description capability, are able to obtain the

needed products, they feel “smarter” than their counterparts

(co-workers, neighbors, relatives). This is because they are

able to co-designed a product instead of buying something

created by somebody else [Schreier, 2006]. This makes

them feel pride of authorship, and increses the creative

achievement value derived from the process [Schreier,

2006; Merle et al., 2010].

Based on the above arguments, we posit that:

H7: The higher the level of user-friendly product-space
description capability deployed by a sales
configurator, the higher the creative value perceived
by the customer through the configuration process

Easy comparison capability
By enabling the comparison between previously created

configurations, a sales configurator deploying easy

comparison capability fosters the users’ learning about the

instrumental value they would derive from the product

being configured. This is because, in assessing the value of

a particular product solution, customers tend to rely on

comparisons with other product alternatives [Simonson and

Tversky, 1992; Simonson, 2005]. The learning process

enabled by easy comparison capability makes a potential

customer more confident that s/he is selecting the product

configuration that best fits his/her needs [Trentin et al.,

2013]. As pride arises when a favorable outcome is ascribed

to one’s contribution [Weiner, 1985], higher easy

comparison capability augments the feeling of pride

perceived by the user through configuring their product.

Moreover, the possibility to compare previously saved

configurations relieves the customer from manually or

mentally recording relevant information (e.g., design

parameters and product attributes) of the previously chosen

configurations [Randall et al., 2005]. In this way, the

customer’s mental abilities, or the time availability for

manually recording information, become less salient and

s/he is enabled to configure a higher number of products. By

being able to configure a higher number of products, the

customer can give free reins to his/her creativity, exploring

multiple combinations of product features (for example

different combinations of colors). This provides more

chances for the evaluation of one’s creative skills, and thus

for eliciting pride feelings [Harter, 1985]. Pride, in turn,

increases the creative achievement value that the customer

derives from the customization process [Merle et al., 2010].

Therefore, we posit that:

H8: The higher the level of easy comparison capability
deployed by a sales configurator, the higher the
creative value perceived by the customer through the
configuration process

Flexible navigation capability
By enabling potential customers to quickly make and undo

changes to previously created product configurations, a

sales configurator with high flexible navigation capability

enables users to conduct more trial-and-error tests to

evaluate the effects of available choices [Trentin et al.,

2013]. This experimentation promotes potential customers’

learning about the value they would derive from the product

being configured. Such learning process makes potential

customers more confident that the product configuration

they have selected is the one that best fits their needs within

the company’s product space [Trentin et al., 2013]. As the

potential customers feel they have obtained the most

favorable outcome out of the configuration process, they

74 Elisa Perin, Alessio Trentin, Cipriano Forza

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

feel proud of their accomplishment, which can be attributed

to their own efforts [Weiner, 1985].

Moreover, as the users are able to conduct many trial-

and-error tests, they can give free reins to their creativity, by

exploring more combinations of product features. This, in

turn, provides more chances for evaluating one’s creative

competences. As pride is a positive, self-rewarding emotion

arising from the evaluation of one’s competence [Harter,

1985; Schreier, 2006], a sales configurator with flexible

navigation capability is likely to make the users experience

stronger feelings of pride. This in turn increases the creative

achievement value they obtain [Merle et al., 2010].
Therefore, we posit that:

H9: The higher the level of flexible navigation
capability deployed by a sales configurator, the higher
the creative value perceived by the customer through
the configuration process

Focused navigation capability
A sales configurator with focused navigation capability

prevents potential customers from going through a number

of product options that they regard as certainly inappropriate

for themselves [Trentin et al., 2013]. As the size of their

search problem is reduced, potential customers can spend

more time and effort in exploring the product options for

which their preferences are less certain. In addition, they can

rely on more time-consuming, compensatory decision

strategies for the resolution of between-attribute conflicts

[Bettman et al., 1990]. This makes them more confident that

the chosen solution is the one that best fits their needs

within the company’s product space. As a consequence, the

potential customers feel they have obtained an outcome that

is really up to their personal capacities, rather than a sub-

optimum obtained under time-constraints, and they are more

likely to feel proud of themselves. Pride, in turn increases

the creative achievement value that the potential customers

derive from the customization process [Merle et al., 2010].
Based on the above arguments, we posit that:

H10: The higher the level of focused navigation
capability deployed by a sales configurator, the higher
the creative value perceived by the customer through
the configuration process

3 Method

To test our hypotheses we conducted an empirical analysis

using survey data collected from a sample of 675 sales

configuration experiences made by 75 students at the

authors’ university (age range: 24-27; 30% females, mean

expertise in using Internet to conduct transactions
1
: 3.95,

standard deviation: 1.90). Each participant was asked to

1 measured as in [Hernández et al 2010], on a seven-point Likert

scale (7 = completely agree, 1 = completely disagree). Only one

factor with eigenvalue higher than 1 was extracted, with a

principal component analysis, 85% variance explained by this

factor, Cronbach’s alfa: 0.94.

configure a product, according to his/her individual needs,

on nine Web-based sales configurators for consumer goods

and to fill out a questionnaire for each experience. In this

questionnaires, participants had to rate the capabilities of

each configurator and the level of hedonic and creative

value they had derived from the configuration process. The

items used to measure these constructs are reported in

Appendix A.
The chosen data analysis method is the structural

equation modeling, using LISREL 8.80. Following
Anderson and Gerbing [1988], we decided to adopt a two-
step approach, assessing construct validity before the
simultaneous estimation of the measurement and structural
models. Moreover, since our variables did not meet the
assumption of multivariate normal distribution (Mardia’s
test significant at p<0.001) we applied the Satorra-Bentler
correction to produce robust maximum likelihood estimates
of standard errors and Chi-square.

4 Results

Prior to conducting the analysis, we decided to control for
possible effects of participants’ characteristics.
Consequently, and consistent with prior studies [Liu et al.,
2006; Trentin et al., 2013], we regressed our observed
indicators on 75 dummies representing the participants in
our study and used the standardized residuals from this
linear, ordinary least square regression model as our data in
all the subsequent analyses.

Confirmatory factor analysis (CFA) was subsequently
employed to assess unidimensionality, convergent validity,
discriminant validity, and reliability of our measurement
scales. A CFA model specifies the posited relations of the
observed variables to the underlying latent constructs, with
these constructs allowed to correlate freely [Anderson and
Gerbing, 1988]. Our CFA model showed good fit indices
(RMSEA (90% CI)= 0.0576 (0.0531; 0.0623), Satorra-
Bentler Scaled χ

2
/df(df) = 2.80 (231), CFI=0.990,

NFI=0.984), meaning that our hypothesized factor structure
reproduced the sample data well.

The standardized factor loadings (S.F.L, see in Appendix
A) were all in their anticipated direction, greater than 0.50
and statistically significant at p<0.001. Altogether, these
results suggested unidimensionality (a set of empirical indi-
cators reflect one, and only one, underlying latent factor)
and good convergent validity (the multiple items used as
indicators of a construct significantly converge) of our
measurement scales [Campbell and Fiske, 1959; Anderson
and Gerbing, 1988].

Discriminant validity, which measures the extent to
which the individual items of a construct are unique and do
not measure other constructs, was tested using Fornell and
Larcker’s [1981] procedure. For each latent construct, the
square root of the average variance extracted (AVE) ex-
ceeded the correlation with all the other latent variables.
This suggests that our measurement scales represent distinct
latent variables [Fornell and Larcker, 1981].

Elisa Perin, Alessio Trentin, Cipriano Forza 75

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Reliability of the measurement scale was assessed using

both AVE and the Werts, Linn, and Joreskog (WLJ)

composite reliability (C.R.) method [Werts et al., 1974]. All

the WLJ composite reliability values were greater than 0.70

and all the AVE scores largely exceeded 0.50 (see Appendix

A). This indicates that a large amount of the variance is

captured by each latent construct rather than due to

measurement error [Fornell and Larcker, 1981; O'Leary-

Kelly and J. Vokurka, 1998].

Finally, we examined the measurement model

complemented by the structural paths corresponding to our

hypotheses. All five sales configurator capabilities are

posited as helping firms increasing the hedonic and creative

value perceived by their potential customer through the

configuration experience. Accordingly, these capabilities

were restricted to impact both hedonic value and creative

value. Results show that all the path coefficients of the

estimated model are positive and statistically significant,

indicating that all our hypotheses are supported. Table 2

reports the Lisrel estimates of the path coefficients, with

standard errors in brackets.

 BCC EC UFDC FlexN FocN

HE 0.221

(0.086*)

0.102

(0.037**)

0.151

(0.067*)

0.283

(0.065***)

0.502

(0.088***)

CA 0.150

(0.085§)

0.166

(0.035***)

0.137

(0.066*)

0.267

(0.055***)

0.261

(0.082***)

Table 2: path coefficients of the estimated model
Significant at: *** p < 0.001; ** p < 0.01; * p < 0.05; § p < 0.10;
BCC = benefit-cost communication; EC= easy comparison; UFD=

user-friendly product-space description; FlexN= flexible

navigation; FocN=focused navigation; HE= hedonic value; CA=

creative achievement value

5 Conclusion

The present paper has developed and tested hypotheses

about the positive impact of five sales configuration

capabilities on the hedonic value and the creative value

perceived by users through the customization process. These

capabilities are: focused navigation, flexible navigation,

easy comparison, benefit-cost communication, and user-

friendly product-space description capabilities [Trentin et

al., 2013].

By finding empirical support for the hypothesized

relationships between such sales configurator capabilities

and the value provided by a configuration process, this work

adds to the debate surrounding information technology

support to mass customization [e.g. Blecker and Friedrich,

2007; Forza and Salvador, 2008]. Mass customization

involves not only improving compatibility between product

customization and the firm’s operational performance, but

also augmenting the value of the customization as perceived

by the customer [Franke and Schreier, 2010; Franke et al.,

2010; Merle et al., 2010]. The results of this study improve

our understanding of how product configurators should be

designed to foster such a value, which is a way for mass

customizers to increase customers’ willingness to pay for a

customized product [Franke and Schreier, 2010; Franke et

al., 2010], and thus to increase the value of a mass

customization strategy.

Acknowledgements

We acknowledge the financial support of the University of
Padova, Project ID CPDA109359.

Appendix A

Sales configurator capabilities
(a)

Benefit-cost communication capability (AVE: 0.697; C.R.:
0.873):

BCC1 Thanks to this system, I understood how the
various choice options influence the value that this
product has for me (S.F.L.: 0.858, P<0.001).

BCC2 Thanks to this system, I realized the advantages and
drawbacks of each of the options I had to choose from
(S.F.L.: 0.792, P<0.001).

BCC3 This system made me exactly understand what
value the product I was configuring had for me (S.F.L.:
0.853, P<0.001).

Easy comparison capability (AVE: 0.796; C.R.: 0.939):
EC1 The system enables easy comparison of product

configurations previously created by the user (S.F.L.:
0.894, p<0.001).

EC2 The system lets you easily understand what
previously created configurations have in common
(S.F.L.: 0.948, p<0.001).

EC3 The system enables side-by-side comparison of the
details of previously saved configurations (S.F.L.: 0.807,
p<0.001).

EC4 The systems lets you easily understand the
differences between previously created configurations
(S.F.L.: 0.913, p<0.001).

User-friendly product-space description capability (AVE:
0.730; C.R.: 0.890):

UFDC1 The system gives an adequate presentation of the
choice options for when you are in a hurry, as well as
when you have enough time to go into the details
(S.F.L.: 0.883, p<0.001).

UFDC2 The product features are adequately presented for
the user who just wants to find out about them, as well
as for the user who wants to go into specific details
(S.F.L.: 0.907, p<0.001).
UFDC3 The choice options are adequately presented for

both the expert and inexpert user of the product
(S.F.L.: 0.766, p<0.001).

Flexible navigation capability (AVE: 0.614; C.R.: 0.826):
FlexN1 The system enables you to change some of the

choices you have previously made during the
configuration process without having to start it over
again (S.F.L.: 0.738, p<0.001).

FlexN2 With this system, it takes very little effort to
modify the choices you have previously made during the
configuration process (S.F.L.: 0.788, p<0.001).

FlexN3 Once you have completed the configuration
process, this system enables you to quickly change any

76 Elisa Perin, Alessio Trentin, Cipriano Forza

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

choice made during that process (S.F.L.: 0.822,
p<0.001).

Focused navigation capability (AVE: 0.724; C.R.: 0.913):
FocN1 The system made me immediately understand

which way to go to find what I needed (S.F.L.: 0.857,
p<0.001).

FocN2 The system enabled me to quickly eliminate from
further consideration everything that was not
interesting to me at all (S.F.L.: 0.790, p<0.001).

FocN3 The system immediately led me to what was
more interesting to me (S.F.L.: 0.893, p<0.001).

FocN4 This system quickly leads the user to those
solutions that best meet his/her requirements (S.F.L.:
0.860, p<0.001).

Perceived benefits of mass customization from a
consumer viewpoint

(b)

Hedonic value (AVE: 0.882; C.R.: 0.957):
HE1 I found it fun to customize this product (S.F.L.:

0.952, p<0.001).
HE2 Configuring this product was a really gratifying

thing to do (S.F.L.: 0.908, p<0.001).
HE3 Customizing this product was a real pleasure(S.F.L.:

0.956, p<0.001).
Creative achievement value (AVE: 0.757; C.R.: 0.925):

CA1 I see myself as the author of the product which I
configured (S.F.L.: 0.913, p<0.001).

CA2 I felt really creative while configuring this product
(S.F.L.: 0.913, p<0.001).

CA3 The company gave me a lot of freedom while
creating this product (S.F.L.: 0.913, p<0.001).

CA4 By personalizing this product, I had the impression
of creating something (S.F.L.: 0.877, p<0.001).

(a)
Trentin et al 2013 ;

(b)
 Merle et al. 2010, adapted

References

[Alba and Lynch, 1997] Joseph Alba and John Lynch.
Interactive Home Shopping: Consumer, Retailer, and
Manufacturer Incentives to Participate in Electronic
Marketplaces. Journal of Marketing, 61(3): 38-53, 1997.

[Anderson and Gerbing, 1988] James C. Anderson and
David W. Gerbing. Structural Equation Modeling in
Practice: A Review and Recommended Two-Step
Approach. Psychological Bulletin, 103(3): 411-423,
1988.

[Arnold and Reynolds, 2003] Mark J. Arnold and Kristy E.
Reynolds. Hedonic shopping motivations. Journal of
Retailing, 79(2): 77-95, 2003.

[Babin et al., 1994] Barry J. Babin, William R. Darden, and
Mitch Griffin. Work and/or Fun: Measuring Hedonic
and Utilitarian Shopping Value. Journal of Consumer
Research, 20(4): 644-656, 1994.

[Baker et al., 1992] Julie Baker, Michael Levy, and Dhruv
Grewal. An experimental approach to making retail store
environmental decisions. Journal of Retailing, 68(4):
445-460, 1992.

[Bettman et al., 1990] James R. Bettman, Eric J. Johnson,
and John W. Payne. A componential analysis of
cognitive effort in choice. Organizational Behavior and
Human Decision Processes, 45(1): 111-139, 1990.

[Blecker and Friedrich, 2007] Thorsten Blecker and Gerhard
Friedrich. Mass Customization Information Systems in
Business. IGI Global, London, UK, 2007.

[Campbell and Fiske, 1959] Donald T. Campbell and
Donald W. Fiske. Convergent and discriminant
validation by the multitrait-multimethod matrix.
Psychological Bulletin, 56(2): 81-105, 1959.

[Childers et al., 2001] Terry L. Childers, Christopher L.
Carr, Joann Peck, and Stephen Carson. Hedonic and
utilitarian motivations for online retail shopping
behavior. Journal of Retailing, 77(4): 511-535, 2001.

[Fiore et al., 2005] Ann Marie Fiore, Jihyun Kim, and
Hyun-Hwa Lee. Effect of image interactivity technology
on consumer responses toward the online retailer.
Journal of Interactive Marketing, 19(3): 38-53, 2005.

[Fornell and Larcker, 1981] Claes Fornell and David F.
Larcker. Evaluating Structural Equation Models with
Unobservable Variables and Measurement Error.
Journal of Marketing Research, 18(1): 39-50, 1981.

[Forza and Salvador, 2008] Cipriano Forza and Fabrizio
Salvador. Application support to product variety
management. International Journal of Production
Research, 46(3): 817-836, 2008.

[Franke and Piller, 2003] Nikolaus Franke and Frank T.
Piller. Key Research Issues in User Interaction with
Configuration Toolkits in a Mass Customization System.
International Journal of Technology Management, 26(5-
6): 578–599, 2003.

[Franke and Schreier, 2010] Nikolaus Franke and Martin
Schreier. Why Customers Value Self-Designed
Products: The Importance of Process Effort and
Enjoyment. Journal of Product Innovation Management,
27(7): 1020-1031, 2010.

 [Franke et al., 2010] Nikolaus Franke, Martin Schreier, and
Ulrike Kaiser. The "I Designed It Myself" Effect in
Mass Customization. Management Science, 56(1): 125–
140, 2010.

[Fürstner et al., 2012] Igor Fürstner, Zoran Anišić, and
Márta Takács. Product Configurator Self-Adapting to
Different Levels of Customer Knowledge. Acta
Polytechnica Hungarica, 9(4): 129-150, 2012.

[Harter, 1985] Susan Harter. Competence as a dimension of
self-evaluation: towards a comprehensive model of self-
worth. In R. Leahy (Ed.), The Development of the Self,
pages 55–121.Academic Press, New York, 1985.

[Hernández et al 2010] B. Hernandez, J. Jimenez, and M. J.
Martin. Customer behavior in electronic commerce: The
moderating effect of e-purchasing experience. Journal of
Business Research, 63(9-10): 964-971, 2010.

Elisa Perin, Alessio Trentin, Cipriano Forza 77

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

[Hirschman and Holbrook, 1982] Elizabeth C. Hirschman
and Morris B. Holbrook. Hedonic consumption:
emerging concepts, methods and propositions. The
Journal of Marketing, 46(3): 92-101, 1982.

[Hoffman and Novak, 1996] Donna L. Hoffman and
Thomas P. Novak. Marketing in hypermedia computer-
mediated environments: Conceptual foundations.
Journal of Marketing, 60(3): 50, 1996.

[Holbrook and Hirschman, 1982] Morris B. Holbrook and
Elizabeth C. Hirschman. The Experiential Aspects of
Consumption: Consumer Fantasies, Feelings, and Fun.
Journal of Consumer Research, 9(2): 132-140, 1982.

[Jeong et al., 2009] So Won Jeong, Ann Marie Fiore, Linda
S. Niehm, and Frederick O. Lorenz. The role of
experiential value in online shopping: The impacts of
product presentation on consumer responses towards an
apparel web site. Internet Research, 19(1): 105-124,
2009.

[Jones et al., 2006] Michael A. Jones, Kristy E. Reynolds,
and Mark J. Arnold. Hedonic and utilitarian shopping
value: Investigating differential effects on retail
outcomes. Journal of Business Research, 59(9): 974-
981, 2006.

[Lea and Webley, 1997] Stephen E. G. Lea and Paul
Webley. Pride in economic psychology. Journal of
Economic Psychology, 18(2-3): 323-340, 1997.

[Li et al., 2001] Hairong Li, Terry Daugherty, and Frank
Biocca. Characteristics of virtual experience in
electronic commerce: A protocol analysis. Journal of
Interactive Marketing, 15(3): 13-30, 2001.

[Liu et al., 2006] Gensheng Liu, Rachna Shah, and Roger G.
Schroeder. Linking Work Design to Mass
Customization: A Sociotechnical Systems Perspective.
Decision Sciences, 37(4): 519-545, 2006.

[Merle et al., 2010] Aurélie Merle, Jean-Louis Chandon,
Elyette Roux, and Fabrice Alizon. Perceived Value of
the Mass-Customized Product and Mass Customization
Experience for Individual Consumers. Production and
Operations Management, 19(5): 503-514, 2010.

[O'Leary-Kelly and Vokurka, 1998] Scott W. O'Leary-Kelly
and Robert J. Vokurka. The empirical assessment of
construct validity. Journal of Operations Management,
16(4): 387-405, 1998.

[Overby and Lee, 2006] Jeffrey W. Overby and Eun-Ju Lee.
The effects of utilitarian and hedonic online shopping
value on consumer preference and intentions. Journal of
Business Research, 59(10/11): 1160-1166, 2006.

[Parsons, 2002] Andrew G. Parsons. Non-functional
motives for online shoppers: why we click. Journal of
Consumer Marketing, 19(5): 380-392, 2002.

[Peng et al., 2011] David Xiaosong Peng, Gensheng Jason
Liu, and Gregory R. Heim. Impacts of Information
Technology on Mass Customization Capability of

Manufacturing Plants. International Journal of
Operations & Production Management, in press, 2011.

[Randall et al., 2005] Taylor Randall, Christian Terwiesch,
and Karl T. Ulrich. Principles for User Design of
Customized Products. California Management Review,
47(4): 68-85, 2005.

[Salvador and Forza, 2007] Fabrizio Salvador and Cipriano
Forza. Principles for efficient and effective sales
configuration design. International Journal of Mass
Customisation, 2(1-2): 114-127, 2007.

[Scarpi, 2012] Daniele Scarpi. Work and Fun on the
Internet: The Effects of Utilitarianism and Hedonism
Online. Journal of Interactive Marketing, 26(1): 53-67,
2012.

[Schreier, 2006] Martin Schreier. The value increment of
mass-customized products: an empirical assessment.
Journal of Consumer Behaviour, 5(4): 317-327, 2006.

[Shih, 1998] Chuan-Fong Shih. Conceptualizing consumer
experiences in cyberspace. European Journal of
Marketing, 32(7): 655-663, 1998.

[Simonson, 2005] Itamar Simonson. Determinants of
customers' responses to customized offers: conceptual
framework and research propositions. Journal of
Marketing, 69(1): 32-45, 2005.

[Simonson and Tversky, 1992] Itamar Simonson and Amos
Tversky. Choice in context: tradeoff contrast and
extremeness aversion. Journal of Marketing Research,
29(3): 281-295, 1992.

[To et al., 2007] Pui-Lai To, Chechen Liao, and Tzu-Hua
Lin. Shopping motivations on Internet: A study based on
utilitarian and hedonic value. Technovation, 27(12): 774-
787, 2007.

[Trentin et al., 2013] Alessio Trentin, Elisa Perin, and
Cipriano Forza. Sales configurator capabilities to avoid
the product variety paradox: Construct development and
validation. Computers in Industry, 64(4): 436–447,
2013.

[Tseng and Piller, 2003] Mitchell M. Tseng and Frank T.
Piller. The Customer Centric Enterprise: Advance in
Mass Customization and Personalization, Berlin,
Germany, 2003.

[Weiner, 1985] Bernard Weiner. An attributional theory of
achievement motivation and emotion. Psychological
Review, 92(4): 548-573, 1985.

[Werts et al., 1974] Charles E. Werts, Robert L. Linn, and
Karl G. Jöreskog. Intraclass Reliability Estimates:
Testing Structural Assumptions. Educational and
Psychological Measurement, 34(1): 25-33, 1974.

78 Elisa Perin, Alessio Trentin, Cipriano Forza

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Generation of predictive configurations for production planning

Tilak Raj Singh
Production Tools (IT)

Mercedes-Benz R&D Bangalore
tilak.singh@daimler.com

Narayan Rangaraj
Industrial Eng. & Operations Research

IIT Bombay, Mumbai
narayan.rangaraj@iitb.ac.in

Abstract
We provide a production planning framework for
variant rich customized products (such as auto-
mobiles, computers), by calculating entirely con-
structible configuration sets for future customer de-
mands in a novel manner. Most of the established
approaches analyse configurations out of historical
order banks for estimating the appropriate set of fu-
ture demands. In the current environment of rapidly
changing designs and highly customized products,
historical demands cannot easily be extrapolated to
capture future market demand and may not even re-
tain future product document restrictions. In this
paper, our aim is to generate configuration sets such
that (1) they represent customers buying behaviour
(derived from configurations produced in the past
and sales planning at aggregate level) (2) they are
consistent with the product documentation. Config-
uration generation is formulated as guided search
procedures which utilize the Satisfiability frame-
work. Selection of configuration sets for planning
is done by a large scale optimization model. We use
column generation and other techniques to solve
this large scale optimization model.

1 Introduction
In the customer focused order-fulfilment strategies such as
Built-To-Order and Assemble-To-Order, mid to long term (6
months - 3 years) planning activities in production and lo-
gistics are supported with aggregate level of forecast from
sales and marketing. Through sales forecast it is possible to
get estimate of total volume for entire product line. In ad-
dition to this we get demand estimates for key attributes of
the product [Srinivasan and Swaminathan, 1997]. For exam-
ple, in case of automotive, attributes can be engine type, body
style, air condition, and so forth. During the estimation de-
mand characteristics of future customers, the dependencies
between attributes and components provided by designers or
customers may not have been considered [Olsen and Saetre,
1997]. Component dependencies by design can be found in
product documentation and these will be reflected in the Bill-
Of-Material system [Kaiser and Küchlin, 2001]. Dependen-
cies from customer point of view may not be straightforward

but these can be extracted from variants produced in the past.
The important thing to note is that these dependencies change
with continuous changes in the design (introduction of new
feature, parts or components) and because of changing mar-
ket, legislation and economic conditions.

Starting from sales planning inputs, the primary task of the
production program planning activities is to know which parts
and components need to be available at what time and in what
amount, in order to produce the planned product units effi-
ciently? This has to be done even when the company has not
received any real customer orders.

Figure 1: Need of methods for consistent transformation of
information between sales and production planning

The derivation of part demand or workload at any assem-
bly station may not be straightforward from the sales plan-
ning inputs. For example, one might get information from
sales forecast that attribute parking assistance system and au-
tomatic lane departure system will be used in 50% and 40% of
the cars respectively. This information may not be enough for
calculation of the demand for a specific steering wheel. Se-
lection of steering wheel may depend on if both attribute are
selected together or individually. Assume that there is one
steering wheel that will be used if both the above attributes
are selected in the same configuration. From the sales plan-
ning as an independent forecast for attributes, the demand of
this specific steering wheel may lie between 0% to 40%. Con-
sequently, without additional assumptions, we cannot deter-
mine demands of all parts required for order fulfilment.

As shown in Figure 1 there is a need to build a medium
which can transfer consistent information across various de-
partments involved in the customer order processing to enable
better program planning. One way to achieve this is by plan-
ning with fully specified customer configurations. As cus-

Tilak Raj Singh, Narayan Rangaraj 79

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

tomer configurations are not available for mid to long term
planning, most manufacturers use variants produced in the
past to estimate the appropriate set of future demands. Due to
the introduction of engineering changes and shifts in market
expectation, variants produced in the past become statistically
less significant to capture future customers demand character-
istics. Also, engineering changes in the product make some
configurations obsolete and cannot be re-produced exactly.
Thus, simple extrapolation of historical demands to capture
future demands characteristics may cause information distor-
tion in the early stage of the production planning.

Our main aim in this paper is to provide an automated
framework to supplement the historical configurations set in
such a way so that the underlying configurations set can be
more relevant to capture future demand characteristics. Once
the desired configurations are generated we will select a target
number of configurations to propose a production plan. The
main challenge in defining future configurations of the prod-
uct is that the solution space is huge (an enormous number of
configurations are technically feasible). We will propose an
integrated configurations generation and selection approach
that will calculate only a few (as compared to the full solution
space) configurations to complete the set of base configura-
tions set for planning. In our work, we will argue that by con-
sidering sales estimates, engineering dependencies, produc-
tion restriction and customer buying behaviour during con-
figuration generation, the number of valid configurations can
reduce significantly.

The rest of the paper is structured in following way: We
will present a review of literature in Section 2 to motivate the
need and use of product configurations in various planning
activities across the organization. In Section 3 we will present
formal problem descriptions with input data and their charac-
teristics. In Section 4 we will discuss a heuristic for generat-
ing configurations directly from product documentation (i.e.
the engineering document). The mathematical model build-
ing and solution methodology will be discussed in Section 5.
Section 6 will describe initial computational experiments on
industry size examples.

2 Literature Review
To manage product variety in mass customization techniques
such as product differentiation and postponement are well
studied approaches, offering flexible manufacturing for high
variety product [Harrison et al., 2004]. The basic idea is to
design and manufacture the product in such a way so that vari-
ety can be introduced at the last stage of the production. The
partially assembled standard products are produced till the
point no differentiation is required. Final assembly is done
based on customer configuration by adding specific product
features. The work in progress (WIP) inventories are main-
tained to offer customer attractive lead time with required va-
riety [Swaminathan and Tayur, 1998]. For a manufacturer
who follows lean manufacturing or Just-in-Time (JIT) ap-
proaches, any kind of inventory either of individual parts or
components or as a WIP is highly undesirable. As product
technology and design changes continuously with respect to
time, it might be difficult and costly to introduce variety at

the end of the production.
Product configuration system has been a key enabler of

mass customization by capturing the customer demand in
most consistent way. Although, initial focus of configura-
tion system was to provide significant reduction in customer
order response time by enabling customer-product interface
[Salvador and Forza, 2004]. As the customer order fulfilment
process varies based on the product configurations, there is a
need to utilize configurations technique in various planning
and process design [Aldanondo and Vareilles, 2008]. Product
configurations act as a medium to translate information be-
tween customer, sales, manufacturing and other supply chain
players. For example maintaining consistent bill-of-material,
or finding range of product with certain characteristics [Aste-
sana et al., 2010].

By utilizing product configurations in the early stage of
planning hybrid order fulfillment strategies such as Virtual-
Build-to-Order (VBTO) system can be created [Brabazon and
MacCarthy, 2004]. The fundamental capability for a VBTO
system is the ability to search the order fulfilment pipeline
on behalf of the customer. These virtual (not created by end
customer) configurations can be reconfigured with respect to
actual customer configuration with minimum difference from
customer preference. At the end, efficiency of systems such
as VBTO mainly depends upon the correlation between the
planned and real orders. If we are able to simulate config-
urations according to customers need, then we will get high
level of satisfaction and smooth processes in customer order
fulfilment.

It has been agreed in literature that efficient configuration
system which co-ordinates and covers information from all
available sources (e.g. sales, marketing, assembly, logistics,
design, and customers) leads to significant gain in customer
order fulfilment process [Trentin et al., 2011]. However, most
of the efforts in the past are devoted to use product configu-
rations for reducing the lead time and maintaining customers
buying behaviour. The generation of configurations has re-
ceived considerably less attention. Hayler [Hayler, 1999] de-
veloped a sequential procedure for generating product con-
figuration from rule based system. Products attribute classes
(levels) are created and each virtual configuration selects at-
tribute based on its forecast rates. The approach can be com-
pared as a product configurator system. A product configu-
rator is created form rule based design document. Selection
of attribute from each step of configuration is supported by
attributes selection rate, historical orders, association rules
and experts experience. These permutation procedures of-
ten hamper the result quality and require manual intervention
to match desired output. Stautner [Stautner, 2001] discussed
configuration generation problem by identifying configura-
tions form recent history through cluster analysis. Historical
orders are modified in such a way so that it can fit in future
planning requirements. The method involves manual proce-
dure to create final configurations. In case of new product
such as electric or hybrid cars which open new market seg-
ments for manufacturer and does not have customer history.
The current available methods find difficulties in generating
future product configuration which matches given input re-
quirements from design, sales and production.

80 Tilak Raj Singh, Narayan Rangaraj

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

3 The planning problem
The major aim of this paper is the development of an auto-
mated procedure that supports production planning, part de-
mand calculation and capacity management for the short-term
as well as for a medium-term planning horizon up to two
years from the start of production.

As discussed in the introduction, in a customer oriented
production environment, planning may be done at an aggre-
gate level such as modules or attributes. One problem in
this method is that engineering constraints between attributes
may not be taken into consideration. For example, selection
of front bumper in the car may depend on body style type,
headlamp, and optional feature and sensor mounted on the
bumper. Drawing estimates of future bumper demand with-
out consideration of such dependencies may give unreliable
estimates.

This problem can be avoided if planning is based on com-
plete products. However, drawing a small number of repre-
sentative configurations from an enormously large set of pos-
sible configurations is a daunting task. One way to attack
this problem is by utilizing customers demand in the past.
Customer order history is an important input for capturing
customer buying behaviour, required for future planning ac-
tivities. In Figure 2 the planning tasks related to logistics and
assembly are derived through extrapolation of configurations
produced in the past. Once the fully specified configurations
are known, assembly related processes can be optimized for
the selected production program. From the logistics point of
view, the most important outcome is the calculation of part
demand, which is straightforward, once the product configu-
rations are known. This method works only if the underlying
configurations are able to fit with future demand characteris-
tics.

Derivedk
configurationsk

setkfork
planning

Configurationk
Selectork

Production
Masterk

data

Bill of
material

station station station

AssemblyAssembly

LogisticsLogistics

-kAssemblyklinekoptimization
-kWorkkloadkcalculation
-kPeakklinekplanning

-Part-rateskforksupply-
chain-control

-Supplierkselection(BOM)

Not consistent with:

- Future product documentation

- Future market estimates

-Future production restrictions

Knownk
configurationsk
poolk(Demandk
inkthekpast)

Futurekdemandk
chracteristics

Figure 2: Current Planning: Generation of future customer
configuration set through extrapolation of customer demand
in past

Variant rich products (e.g automobiles) often receive
highly individualized demand and undergo various engineer-
ing changes. The regular introduction of new features and
short product life cycle make the task of capturing future de-
mand characteristics out of production history a challenging
one. In order to facilitate orders/configurations based plan-
ning we need to supplement the reference pool of histori-
cal production with some customer focused future configu-
rations. To attain planning results of high quality, all the rel-
evant information sources have to be considered, namely the

valid list of the product features/attributes, rules for the cor-
rect combinations of the attributes, sample of variants pro-
duced in the past to capture customers’ behaviour, future sales
estimates to capture market changes, capacity restrictions and
production plans that fix the total number of planned vehicles.

station station station

AssemblyAssembly

LogisticsLogistics

-/Assembly/line/optimization
-/Work/load/calculation
-/Peak/line/planning

-Part-rates/for/supply-
chain-control

-Supplier/selection

Consistent/and/
realistic/

configurations/
for/planning

Sales/estimates/
for/demand/in/

future

Production
Master/

data

Bill-of
-material

Product/
documentation

Production/Asse-
mbly/restrictions

Initial/
Configurations/

Generation/
5Section/4v

The/Optimal
Configurations/

Selector
5Section/5v

Customer/
buying/behaviour/

5Derived/from/
historical/demandv

Integrated/
configurations/

selection/T/
generation

Figure 3: Proposed Framework: Calculation of consistent
configuration sets as a foundation for efficient production
planning

We propose a different planning set up to generate and se-
lect reference configurations for production planning. The
main difference between the current (Figure 2) and the pro-
posed methodology (Figure 3) is that current planning is re-
stricted to create production programmes out of known con-
figurations only, while in the proposed approach, we will gen-
erate product configurations as and when required, to cap-
ture future demand characteristics. This will result in a bet-
ter match with market estimates and will be consistent with
the engineering limitations. Configurations produced in the
past can only appear in future planning if they are feasible
with latest product documentation. Attributes dependencies
in product documentation are maintained formally to support
various engineering planning and can be used to automati-
cally check the configurations feasibility. However, historical
orders even after failing overall feasibility may contains some
important relations among attributes reflecting customer buy-
ing habits. For this purpose we will use a data mining ap-
proach to identify interesting attribute combinations from the
customer point of view, using historical sales data.

The goal of the paper is as follows. Given 1) product doc-
umentation 2) market estimates 3) customer behaviour and 4)
assembly restrictions, the task is to generate and select valid
configurations, which will lead to a production plan. The
set of product configurations that are generated is utilized in
planning the whole production process (full bill of material,
i.e. a car in detail). The optimal configuration selector model
(proposed in section 5.2) does not explicitly generate all (or
a large number) configurations while it generates a relativ-
ity small number of configurations to sequentially build up
the desired production plan. The initial configuration gen-
eration module (proposed in section 4) is used to provide a
starting solution to the optimization model. Although, the
optimization based module is able to generate and select con-
figurations, an initial solution from heuristics will give a good
starting point. Before describing the development of the so-
lution methodology we list out important data sources and its
characteristics.

Tilak Raj Singh, Narayan Rangaraj 81

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

3.1 Product Documentation

Product documentation is the most important input data for
proposed framework and supplies two main sources of data:

1. List of available attributes of the product. For autmo-
biles, attributes can be power train, Hi-Fi equipment,
parking assistant package, etc. Attributes also include
labels or user manuals, which may not be crucial for
planning but which are required during the creation of
an automated framework for production planning such
as automated computation of detailed part demand.

2. Rule for feasible combinations of attributes in the con-
figuration. Product configuration can be defined as a
list of selected attributes from given set of available at-
tributes. Customer configurations can be produced by
combining different attributes all together which are per-
mitted by product documentation. It is important that
while combining different attributes, we must fulfil the
interdependencies between attributes, so that the feasi-
ble product configuration can be generated [Sinz et al.,
2003]. For instance, in the USA, some engines required
special transmission types, this condition must hold dur-
ing creating configuration with that particular engine.

Interdependencies among attributes are documented and
maintained in the product technical document by a rule sys-
tem. These rules are basically propositional Boolean formu-
las imposed against each attribute. These formulas are lim-
ited to logical operations ∨(OR), ∧(AND), ¬(NOT). Selec-
tion of attributes in a configuration is done through evaluating
the respective Boolean formula. Table 1 shows an example of
such documentation.

Attribute Name Rule Description
1 Automatic

climate
control

(2)∧(3∨4) attribute 1 only
when attribute 2 is
present and either
attribute 3 or 4 is
present

2 Air condi-
tion

TRUE must be present in
every variants

3 Comfort
package

¬(4) attribute 4 should
not be present

4 Performance
package

¬(3) attribute 3 should
not be present

Table 1: Rule based product document example

The customer order processing is controlled by evaluating
the rule’s formulae under the variable assignment induced by
the customer order and executing suitable action based on
whether the formula evaluates to TRUE or FALSE. [Sinz et
al., 2003] have presented a detailed description of one such
product documentation; we will use a similar kind of product
documentation in this paper. Product documentation describe
product in flat structure over attributes (Boolean variables)
and capture dependencies through propositional Boolean for-
mulas.

3.2 Future market estimates
Sales and marketing departments continuously study the mar-
ket behaviour and product positioning. This study enables
them to give some demand estimates on key attributes of fu-
ture products, which any way need to be calculated accurately
for various marketing and vendor negotiation purposes. We
assume that this information is available to us as an input to
capture future market behaviour. We aim to generate config-
urations sets which represent the given estimates of attributes
in the best possible way.

3.3 Assembly/ Production estimates
Product assembly is an important step in customer order ful-
filment. Assembly is often restricted to be done on a number
of predefined stations with certain work functions at each sta-
tion. There are some limitations on the capacity and workload
at each station. Due to these restrictions, order fulfilment can
only be achieved for configurations that satisfy these restric-
tions. From the aggregate production plan, the total number
of planned vehicles can be estimated and the final production
plan is generated with the estimated number.

3.4 Customer behaviour
Customer buying trends are extracted by analyzing the prod-
uct variants produced in the past. We first check the feasibil-
ity of variants that are already produced with respect to new
product documentation rules. All feasible configurations will
be candidates in the solution space. Nevertheless, configura-
tions which are not feasible due to some engineering changes
are analyzed on the level of attributes relations. We use the
association rule mining technique to identify customer buy-
ing behaviour. All relations derived from the data mining
approach are again verified with latest product documenta-
tion for its feasibility. Customer demand characteristics are
calculated as joint or conditional selection rate of attributes,
and these are controlled during the development of final pro-
duction plan. The computation of customer behaviour trends
from historical demand is not discussed in this paper and we
assume that this information is already available as an input.

4 Configuration Generation
Configuration which satisfies rules from product documenta-
tion can be represented as Boolean vector satisfying a con-
straint system. We want some number of configurations
which satisfy product’s technical rules and are consistent with
customers demand estimates in some way. e.g. we want N
configurations which reflects customer demand estimates as
best as possible.

As a first step we would like to generate valid configu-
rations which can be use latter for some optimization prob-
lem. Generation of configuration involves finding TRUE or
FALSE assignment for each attribute. In this section we will
propose a guided search procedure which randomly generate
configuration with some attribute selected in guided way and
others then supplemented as per attribute selection rates form
sales. Finally we solve a satisfiability problem with partial as-
signment of attributes. The satisfiability problem will result
selection of generated configuration with some probability.

82 Tilak Raj Singh, Narayan Rangaraj

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

1.-List-of-attributes
2.-Product-documentation
3.-Sales-esmimates
4.-Customer-behaviour

Selection-of-attributes-
and-group-of-attributes

-based-on-sales-estimates-
Y

-customer-behaviour

is-configuration
-complete?

--Get-simplified-rules
--Construct-a-small-
SAT-problem

SAT?

is-it-
fesible? Store-

Configuration

Next-
iteration?

Stop

YES
NO

YES

NO

NO

NO

Figure 4: Steps for building up a configurations base

Figure 4 shows a flow diagram of building configurations
sequentially. Selection of an attribute in the configuration
may exhibit certain characteristics such as mutually exclu-
sivity. For mutually exclusive attributes selection should be
done through a multinomial choice. In general, the numbers
of possible configurations in mass customization are huge.
This motivates us to build a random search procedure to get
a representative set of constructible configurations. In princi-
ple, first we arrange attributes (or group of attributes) in the
decreasing order of their dependency index. The dependency
index can be calculated by analysing the selection rule associ-
ated with the attribute. The attributes/group which has high-
est dependency will be selected first and will imply selection
(not selection) of other dependent attributes. We will con-
tinue to do this process until all attributes assignment is not
known. At the end we will check if generated configuration
is feasible through evaluating rules with known configuration
vector.

As soon as any attribute is selected in the configuration,
we check the respective propositional Boolean formula (from
product documentation) and select unassigned attributes from
Boolean formula such that formula evaluates to True. This
will keep some level of consistency during the configura-
tion building process. We iterate through this process until
a conflict or a steady state where no assignment is possible
is reached. If the configuration finds assignment for all at-
tributes, we finally check the overall feasibility of the config-
uration by evaluation all rules once again. The configuration
will be selected with some probability of having a feasible
configuration.

If the initial configuration is not able to extract all attributes
assignment, we simplify all propositional Boolean formulas
with known partial attribute settings and solve a satisfiability
problem. Due to assignment of large number of attributes,
the number of clauses and literals in satisfiability problems

are minimized significantly. If the problem is not satisfiable
we reject the configuration and start building a fresh config-
uration. The configuration generation runs until maximum
number of iterations is reached or generated set of configura-
tions is within specified range of attributes estimates.

The randomness in the configuration generation procedure
will help in creating diversified configurations that will cap-
ture the customer behaviour of individualization in variant
rich product. On the drawback side, there will not be any
guarantee that the characteristics of generated configurations
will improve with number of iterations. This lead us to
think about a framework which selects generated configura-
tion such that the target configurations set characteristics can
be match as best as possible. At same time, the framework
should also be able to generate missing configurations so that
characteristics of the final set of configurations can be close
to the target one. In the next section we discuss an integrated
configurations generation and selection procedure.

5 Integrated configurations generation and
selection

Heuristic approach discussed in section 4 does not provide
answers for questions like 1) How many constructible config-
urations will be generated from the configuration generation
heuristic? 2) How good the deviation between target and gen-
erated set of configurations will be? Although, approach can
give a reasonable set of constructible configurations in short
period of time this can be used as a starting solution for fur-
ther optimization process. Based on the quality of starting so-
lution the optimization model can generate missing configu-
rations to complement reference configurations set. To facili-
tate optimization based approach for generation and selection
of configurations we will first transform Boolean propositions
from product documentation to a constraints system.

5.1 Transformation of logical rules to linear
inequalities

Linear inequalities over Boolean variables are a widely used
modelling technique. The main task during transformation of
an attribute selection rule into a system of linear constraints
is to maintain the logical equivalence of the transformed ex-
pressions. The resulting system of constraints must have the
same truth table as the original statement. For every attribute
we will introduce an the binary decision variable, is denoted
by yi. The connection of these variables to the propositions
is defined by the following relations:

yi =

{
1 iff attribute i is TRUE
0 otherwise (1)

Imposition of logical conditions linking the different actions
in a model is achieved by expressing these conditions in the
form of linear constraints connecting the associated decision
variables. Some general transformations are presented in Ta-
ble 2.

Our approach, in principle, involves identification of pre-
cise compound attribute rules of the problem and then pro-
cessing it with developed equations. Before transformation,

Tilak Raj Singh, Narayan Rangaraj 83

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Rule Description Constraints
i→ j i implies j yi − yj ≤ 0
i↔ j i and j must come to-

gether
yi − yj = 0

i → (j ∨ ... ∨
n)

if i is true then at least
one attributes from j to
n, must be true

yi−(yj+...+
yn) ≤ 0

i → (j ∧ ... ∧
n)

if i is true then all at-
tributes from j to n (say
cardinality p) must be
true

(p)yi − (yj +
...+ yn) ≤ 0

Table 2: An excerpt of attribute selection rule transformation
table

Attribute
selection rules

Rule simplefication:
De-morgan's & double

negation law

Generation of
expression tree

Transformation of
logical propositions

to 0-1 linear
constraints

Figure 5: Block diagram for logical rules to inequalities trans-
formation

we simplify Boolean expression through simple Boolean al-
gebra, DeMorgan’s Law. The logical rule is represented by a
tree graph where attributes are associated with their common
operator node. We traverse through the tree and prune the
tree in such a way so that standard transformation equation
(e.g. Table 2) can be applied. This pruning involves introduc-
tion of new auxiliary variables which helps in transformation
process.

B[y] ≤ b (2)

As a result of transformation linear constraints sets are cre-
ated as specified in Eq.2, where B is the constraint matrix
contains all constrains originating from product documenta-
tion. All product configurations must satisfy Eq.2 in order to
be feasible for production and can be a candidate for produc-
tion plan.

5.2 The optimal configuration selection model
To create production plan based on detailed product configu-
ration we need to list out some number of configurations (say
K) in such a way that estimated characteristics of configura-
tions can be match as best as possible. For example, let us
assume that an automotive contains 1000 of attributes and we
want to select 3000 configurations generated from available
attributes. Our task will be to answer, does attribute i be-
long to the configuration j finally selected? This example will
leads to s3 millions (a large number) of 0-1 type decision vari-
ables. We do know something about the portion of attribute

(i’s) in the final configurations (demand estimates from sales,
customer behaviour etc.). So the objective function will be
to minimize the positive deviation between selected and esti-
mated values. General structure of above problem is defined
over combinatorial optimization, with a very large number of
variables that is quite difficult to solve.

Another possibility of formulation for given problem is
to list all possible configurations with the given number of
attributes. This runs into the hundreds of millions! Much
larger than the previous formulation. We can define 0-1
variable over each configuration on whether it is selected
or not. These feasible configurations has to be implicitly
represented, i.e. not possible to list all of them explicitly.
Surprisingly, this way of thinking is still useful. In this
section we will develop an optimization model based on
Lagrangian approach using column generation.

The Master Problem:
Let: i be ith attribute, i ⊆ {1...I}, where I is the number of
attributes
j be jth configuration, j ⊆ {1...J}, where J is the number of
unique configurations

Data
K = the number of configurations planned
Di= Demand estimate for attribute i
Ci= Demand mismatch cost associated with attribute i
λ= Lagrange multiplier

Ai,j =

{
1 if ith attribute is present in jth configuration
0 otherwise

Decision variables:

Xj =

{
1 if configuration j is selected
0 otherwise

Zi= Deviation between given demand estimate and cal-
culated frequency for attribute i

Objective Function:

P = Minimize
∑

i

Ci ∗ Zi + λ(
∑

j

Xj −K) (3)

Subject to

Zi ≥
∑

j

AijXj −Di . . . ∀i (4)

Zi ≥ Di −
∑

j

AijXj . . . ∀i (5)

Xj = 0 or 1 (6)

The first sum of objective function in Eq. 3 tries to min-
imize mismatch cost of the positive deviation from desired
demand estimates of the attributes. Second part of objective
function ensures that selected number of configurations are
closed to K, the desired number for planning. While, con-
straint Eq. 4 Eq. 5 ensure the feasible configuration set close

84 Tilak Raj Singh, Narayan Rangaraj

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

to attribute demand estimates. Each attribute is associated
with a demand mismatch cost. We fixed Xj to 0-1 type to
support higher degree of individualization in the generated
plan.

The above model is too large to solve by explicitly gener-
ating large number of configurations. A solution for such a
large scale optimization can be found using column genera-
tion approach [Ben Amor and Valrio de Carvalho, 2005]. We
can start with a possible set of Xj variables (may be more
than K, generated from Section 4 or derived from history)
Solving LP relaxation of the above problem to decide which
of thoseXj’s are 1, and then try generate a new configuration
which can improve the objective function value.

5.3 Implementation of the model
To start solving the model presented in Section 5.2 we
use a fixed value of λ (this is because anyway we want
approximately K configurations that are representative of
the demand). Now we can solve the master problem with
initial sets of Xj’s. The question would be how to know if
the current selection of configuration is good. For this, we
will compute dual variable corresponding to constraints 4-5,
with these values a sub problem is set up. The sub problem
is basically a generation of new configuration for Aij matrix
which can be formulated as follows:

The Sub-Problem:
Data: Wi= Dual variable from LP relaxed of the opti-
mal configuration selection model (5.2), associated with
constraints 4-5 (note that for each i, one of them will be
non-zero)
B= Set of constraints derived from product document (see
Section 5.1)
Decision Variable

[yj]i =

{
1 if ith attribute is present in new configuration
0 otherwise

[yj]i= new configuration for jth column of configura-
tion matrix Ai,j

Objective:
Maximize

∑

i

Wi ∗ yi (7)

subject to:
B[y] ≤ b (8)

(i.e. y is a feasible configuration)

yi = 0 or 1 (9)
The sub-problem is generate a possible new configuration j.
If this new configuration j satisfies Eq. 10 the configuration
j enter the pool.

∑

i

Aij + λ−
∑

i

Wi ∗ yi < 0 (10)

Dual costs are recomputed by solving the master problem
(Section 5.2) and the process terminates when no more con-
figurations are found to be worth taking in. We use IBM

ILOG Cplex engine to solve the sub-problem. The master
and the dual problem may have to be solved multiple times
before terminating criteria satisfies.

6 First evaluation results
In this section we discuss typical computation parameters and
associated numbers with input data and decision variables.
We tested our methods mainly on automotive data, for config-
uration based planning the granularity of the computation is
plant/model series/body style (e.g. Bremen, C-class, Sedan).
All input data and estimates are available or derived to same
granularity. Total number of attributes are in the range of
500-1000. Typically selection rates of 100-200 key attributes
are estimated from sales. Some attributes are related to pro-
duction such as plant where production takes place, regularity
laws, dependencies structure because of technical reason.

We target to generate production plan for weekly or
monthly time frame and requite to simulate some thousand
of configurations, typically 3-10 thousands of configurations
in one computation. The generation of production plan with
thousands of configuration need to be done by ensuring max-
imum correlations with given demand characteristics (e.g.
sales estimates). The typical use of calculated configurations
is to derivation of part demand or estimation of medium term
workforce in assembly operations.

On an example with 130 attributes (for which attached se-
lection rates are given), 900 total attributes and selection of
about 3000 configurations, resulting problem has 10,000 vari-
able and 15,000 constraints. The match between the target
and achieved frequency of attributes in generated configura-
tion set is defined by the ratio of target and gain frequency of
attributes. If this ratio is equal to one, it is desirable.

Figure 6: Attribute frequency match between target demand
and gain rate in generated configuration set

Figure 6 provides comparison between results obtained af-
ter configuration generation heuristic (Section 4) and opti-
mization based procedure (Section 5). The grey (light) line
represents the best solution of the optimization model, which
is very close to 1. The result from the configuration gener-
ation heuristic is plotted in a decreasing order of deviation
from the target rate (in blue). We can see that some of the
attributes are more than required and some less, but many
are quite close to the desired target. This can perhaps be im-
proved further in the satisfiability section of the algorithm,
which allows different heuristic ways of completing orders.

Tilak Raj Singh, Narayan Rangaraj 85

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

In general, the heuristic provides a starting solution for our
optimization model and helps in speeding up in the process
of generating a configuration set for planning. The attribute
selection rate obtained in generated configuration set matches
reasonably with the target attribute demand.

7 Conclusion
In this paper we presented a production planning framework
based on fully specified products which guarantees consis-
tency among different planning tasks. The mathematical
model that has been developed is capable of considering het-
erogeneous information generated by different planning de-
partments. In this framework we are able to consider up-to-
date product documentation at an early stage of program plan-
ning. The problem of find a valid set of configurations is for-
mulated as an optimization problem by translating all logical
conditions from the product document to algebraic inequali-
ties. This transformation enables us to use the optimization
framework effectively. The number of constraints generated
during this transformation can be further reduced by simpli-
fying the product rule system or through pattern identification
in the product documentation.

The large variety in products implies that the construction
of the set of customer-focused configurations is a large scale
optimization problem. Our proposed column generation ap-
proach can be useful to get a good solution for this problem.
The configuration generation heuristic is based on the guided
search procedure that can be enhanced further to gain better
speed and improve the result quality. Some other parameters
like restrictions at the part level and assembly operation level
are subjects of future research.

References
[Aldanondo and Vareilles, 2008] Michel Aldanondo and

Elise Vareilles. Configuration for mass customization:
how to extend product configuration towards require-
ments and process configuration. Journal of Intelligent
Manufacturing, 19(5):521–535, 2008.

[Astesana et al., 2010] Jean-Marc Astesana, Laurent
Cosserat, and Helene Fargier. Constraint-based vehicle
configuration: A case study. In Proceedings of the
2010 22nd IEEE International Conference on Tools with
Artificial Intelligence - Volume 01, ICTAI ’10, pages
68–75, Washington, DC, USA, 2010. IEEE Computer
Society.

[Ben Amor and Valrio de Carvalho, 2005] Hatem Ben Amor
and Jos Valrio de Carvalho. Cutting stock problems.
In Guy Desaulniers, Jacques Desrosiers, and Marius M.
Solomon, editors, Column Generation, pages 131–161.
Springer US, 2005.

[Brabazon and MacCarthy, 2004] Philip G. Brabazon and
Bart L. MacCarthy. Virtual-build-to-order as a mass cus-
tomization order fulfilment model. Concurrent Engineer-
ing: Research and Aplicxations, 12(2):155–165, 2004.

[Harrison et al., 2004] Terry P. Harrison, Hau L. Lee, John J.
Neale, S. Venkatesh, and Jayashankar M. Swaminathan.

Managing product variety through postponement: Con-
cept and applications. In Frederick S. Hillier, editor, The
Practice of Supply Chain Management: Where Theory and
Application Converge, volume 62 of International Series
in Operations Research and Management Science, pages
139–155. Springer US, 2004.

[Hayler, 1999] Christian Hayler. Ein regelbasiertes Sys-
tem zur Generierung von Orders für Lagerfahrzeuge-
Fallstudie bei einem deutschen Automobilhersteller. PhD
thesis, Universität Jena, 1999.

[Kaiser and Küchlin, 2001] A. Kaiser and W. Küchlin. Auto-
motive product documentation. In Proceedings of the 14th
International IEA/AIE Conference, LNCS, pages 465–475.
SpringerVerlag, 2001.

[Olsen and Saetre, 1997] K. A. Olsen and P. Saetre. Manag-
ing product variability by virtual products. International
Journal of Production Research, 35(8):2093–2108, 1997.

[Salvador and Forza, 2004] F. Salvador and C. Forza.
Configuring products to address the customization-
responsiveness squeeze: A survey of management issues
and opportunities. International Journal of Production
Economics, 91(3):273–291, 2004.

[Sinz et al., 2003] C. Sinz, A. Kaiser, and W. Küchlin. For-
mal methods for the validation of automotive product con-
figuration data. Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing, 17(1):75–97, January
2003. Special issue on configuration.

[Srinivasan and Swaminathan, 1997] R. Srinivasan and J. M.
Swaminathan. Managing configurable products in the
computer industry: Planning and coordination issues. vol-
ume 22, pages 33–43. Sadhna:Academy Proceedings in
Engineering Sciences, February 1997.

[Stautner, 2001] Ulrich Stautner. Kundenorientierte Lager-
fertigung im Automobilvertrieb: ergnzende Ansätze zum
Supply-chain-Management. PhD thesis, Universität
Göttingen, 2001.

[Swaminathan and Tayur, 1998] Jayashankar M. Swami-
nathan and Sridhar R. Tayur. Managing broader product
lines through delayed differentiation using vanilla boxes.
Manage. Sci., 44:161–172, December 1998.

[Trentin et al., 2011] Alessio Trentin, Elisa Perin, and Cipri-
ano Forza. Overcoming the customization-responsiveness
squeeze by using product configurators: Beyond anecdotal
evidence. Computers in Industry, 62(3):260–268, 2011.

86 Tilak Raj Singh, Narayan Rangaraj

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Abstract

Based on the increased demand for product customization
and the intensified competition, manufacturing companies
are today more than ever required to deliver product variants
in an efficient manner. Research on mass customization has,
up until now, primarily focused on clarifying the
organizational capabilities defining successful mass
customizers. Choice navigation is identified as one of the
three fundamental capabilities. The process of building this
capability does not occur as a discrete event, it is a change
process. Based on literature review and analysis, this paper
addresses the change process in relation to implementation
of the choice navigation capabilities. A framework for
performance assessment, supporting implementing of the
choice navigation capabilities, is forwarded.

1 Introduction
A broadly recognized trend of today’s markets is the
demand for customized products and services meeting the
individual customer’s needs. Simultaneously today’s
manufacturers are faced with demands for delivering
products faster and cheaper. These market trends happen in
concurrence with the increased saturation and globalization
of markets. Consequently, today’s manufacturers are on top
of the demand for customization, also faced with increasing
demands for operating in an effective & efficient manner.
Perfectly suited to this challenge, mass customization arose
as a concept and an operations strategy in the late 80’s,
combining the ability to deliver products that meet the
individual customers’ needs, as well as having an efficiency
similar to mass production [Davis, 1989]. Since then,
research has focused on clarifying the fundamental, or
defining, characteristics of the firms that successfully adopts
the mass customization strategy. This has led to the
introduction of three fundamental dimensions in enabling
the mass customization ability. The three dimensions are by
[Salvador et al., 2009] framed as the three fundamental mass
customization capabilities; Solution space development,
robust process design and choice navigation.
This paper focuses on the process of building the choice
navigation capability. This capability, or rather set of
capabilities, refers to the ability to support customers in the
process of selecting the solution or variant that fulfils the
customer requirements out of a pre-defined solution space,

and maximizes the customer value. Several researches and
practitioners in the industry have adopted the three
fundamental capabilities, and continued this line of research,
defining and developing a more comprehensive
understanding of what characterises and constitutes a
successful mass customizer [Fogliatto et al., 2012; Lyons et
al., 2012; Piller & Tseng, 2010; Walcher & Piller, 2011].
However, recent studies report that experience in industry
adopting and building these capabilities, is for many
companies an unsuccessful quest, leading to in worst cases
company closures [Piller et al., 2012b]. Based on this
knowledge, we argue that the industry lacks more detailed
and comprehensive guidance, on how to undertake the
transition from conventional approaches at manufacturing,
to mass customization as a manufacturing strategy.
Research on mass customization has also lately increasingly
focused on the “how to” of mass customization, in order to
provide improved guidance for companies in the
organisational transition, when following a mass
customization strategy, e.g. [Partanen & Haapasalo, 2004;
Pollard et al., 2011].
The same situation holds true when focusing on choice
navigation. Significant amount of research and valuable
knowledge have been generated on what choice navigation
is about, including how to develop product configuration
systems. However, the topics of how to support the
transition towards MC, and additionally the process of
building the choice navigation capabilities, have thus so far
only been scarcely addressed.
An alternate method of supporting organisational change,
which is often addressed in other streams of literature, is the
use of performance management. In relation to this, Nielsen,
Brunø and Jørgensen [Nielsen et al., 2012] have introduced
an overview of metrics and a framework for measuring a
company’s performance as a mass customizer. However, as
the metrics only focus on solution space assessment or mass
customization in general, no guidance is given in regard to
choice navigation.
The purpose of this paper is based on this shortcoming in
the existing literature on mass customization to answer the
following research questions:
How can performance assessment support the
implementation of the choice navigation capabilities? What
performance assessment methodologies are appropriate?
In order to answer this, the choice navigation capability is

Choice Navigation: Towards a Methodology for Performance Assessment

Simon Haahr Storbjerg, Kjeld Nielsen and Thomas Ditlev Brunoe

Department of Mechanical and Manufacturing Engineering, Aalborg University, Denmark
shs@m-tech.aau.dk

Simon Haahr Storbjerg, Kjeld Nielsen, Thomas Ditlev Brunoe 87

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

further detailed in the following section by the use of central
literature In section 3, a model is introduced describing the
dimensions along which performance assessment is relevant
in the context of choice navigation. Based on this model,
relevant performance assessment methodologies are based
on the literature review introduced in section 4. In
conclusion, the results of the literature review are discussed,
and direction for potential further research is given.

2 Choice Navigation - What is it about?
What performance assessment methodology is appropriate
depends on the object or artefact of measurement, as this
defines what is relevant to measure, and how measurement
can be done. As the fundamental capabilities of mass
customization are defined at a rather abstract level, it is
challenging to relate this to specific activities, or activity-
areas, in a firm. Based on the aforementioned premise, the
principal questions are: What is choice navigation really
about? What does the choice navigation capability mean in
an industrial context? Which activities, systems and human
competencies does this abstract and high level capability
refer to?
The choice navigation capability is by [Salvador et al.,
2009] defined as, the capability of “supporting customers in
identifying their own solutions, while minimizing
complexity and the burden of choice”. By this definition it
is revealed that, the concept of the choice navigation
capability, builds on assuming a causal relation between the
efforts required of the customer to identify the solution, and
the customer satisfaction. Consequently when customers
e.g. are exposed to an assortment of too many choices, the
cognitive cost of evaluation outweighs the value of
increased variety [Huffman & Kahn, 1998; Piller et al.,
2012a]. Based on this knowledge, companies are required to
simplify the navigation of their product assortment.
It could seem as if MC-scholars are more or less in
agreement on the underlying phenomena of choice
navigation. However, if the literature on mass customization
and choice navigation is reviewed, it is revealed that the
conception of the choice navigation capability varies.
Some authors, e.g [Da Silveira et al., 2001; Fogliatto et al.,
2012] describes choice navigation as a customer
manufacturer communication, involving the transfer of
knowledge from manufacturer to customer, and vice versa.
Hence a knowledge transferring process done by so-called
agents of information transfer, which in this connection are
described as the manufacturer and its customers. In contrary
to this, other authors, e.g. [Franke & Piller, 2003; Heiskala
et al., 2010; Mortensen et al., 2008; Trentin et al., 2013]
describe choice navigation, as a configuration system
involving the use of dedicated IT support, in the form of a
product configurator, also referred to as choice board, or
customer design system.
Investigating the underlying view of the choice navigation
capability in these cases, it is evident that in both [Da
Silveira et al., 2001; Fogliatto et al., 2012] the choice
navigation capability is described as primarily relating to the
agents of information transfer, whereas the view on choice

navigation in the perspective of [Heiskala et al., 2010]
primarily relates to the configuration system, its features,
user interface layout and ability to configure a variety of
products as well as undertake data migration.
Instead of arguing for or against these different views, the
choice navigation capability has more recently by e.g.
[Forza & Salvador, 2007] also been described from a more
holistic perspective. Building on this, the implementation of
the choice navigation capability is more than just
implementing a configuration system, it is about managing
organizational change, which involves both changes in
systems and people. Following this, we suggest that this
process should be viewed from a socio-technical perspective
[Trist, 1981].

2.1 Choice Navigation from a Socio-Technical
System Perspective

Viewing this concept from a socio-technical point of view,
it is implied that a company’s capability to perform choice
navigation does not rely entirely on the technical systems,
but to some extent also on the people using the system,
whether internal sales people or external customers.
Based on the above, we argue that choice navigation as
depicted on Figure 1, consists of both social assets, such as
behaviour, routines and skills of e.g. sales personnel, as well
as technical assets such as information systems, tools etc.
Based on this, we argue that the choice navigation capability
is to be viewed as a higher level abstract capability, which is
constituted by a set of more concrete capabilities.

Figure 1 Choice navigation as a socio-technical system capability
with multiple abstraction levels.

Another argument for taking a more holistic and socio-
technical system perspective on the choice navigation
capability, is found in the following definition of
capabilities, which both encompasses human assets, and
technical assets. According to [Boer et al., 2001],
capabilities can be described as “Integrated stocks of
resources that are accumulated over time through learning,
or established through deliberate decisions. These stocks of
resources include internalised behaviours, technical skills,
organisational routines, and corporate assets such as
information systems, databases, libraries, tools, and
handbooks”.

3 Transition Towards Choice Navigation
Mass customization calls for a transformed company
[Boynton et al., 1993]. As highlighted by [Salvador et al.,
2009], this transformation is not something that can be

88 Simon Haahr Storbjerg, Kjeld Nielsen, Thomas Ditlev Brunoe

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

realized in a single event, it is an on-going or continuous
improvement activity.
The purpose of this paper is to clarify performance
assessment methodologies, that can give valuable feedback
on the implementation of the choice navigation capabilities,
so that corrective actions can be taken.
Based on the viewpoint that the choice navigation capability
is comprised of both social and technical capabilities, key
questions in relation to this are: How to understand and
model the process of building the choice navigation
capabilities? Which performance constructs can be
identified, i.e. along which dimensions can performance of
this socio-technical configuration system be described?
In relation to the first question [Boer et al., 2001] has
introduced the model depicted in Figure 2, which describes
the central constructs in the process of building capabilities
for continuous innovation.

Figure 2 CIMA behavioural model by [Boer et al., 2001].

As the model in Figure 2 links elements such as capabilities,
performance and levers, we have chosen to take point of
departure in this, in modelling of the central elements
involved in implementing the choice navigation capabilities.
The outcome, which is depicted at Figure 3, shows how the
choice navigation process, which consists of interplay
between behaviour of the technical system and the social
system, determines the choice navigation performance.
Furthermore, the choice navigation process is affecting the
choice navigation capabilities, by e.g. development of
routines based on repeated behaviour. The choice
navigation process is in turn affected by the capabilities of
the company, and the levers brought in use, e.g. IT systems,
etc. Finally the levers utilized are based on feedback or
control information from the performance of the process.

Figure 3 Behavioural model of the socio-technical CN system,
outlining the three dimensions of performance assessment. Model
is based on modifications to model of [Boer et al., 2001].

Based on the constructs of this process in building the
choice navigation capabilities, three dimensions have, as
depicted at Figure 3, been identified potential in describing
the performance of this process:
1) The degree to which the capabilities have been built
2) The choice navigation process performance

3) The output performance of the choice navigation process
In addition to these three performance dimensions, it is also
relevant to describe the performance of the mass
customization process. This is however not included as an
additional dimension, as it is believed to be hard to
distinguish between the performance of choice navigation,
and the performance of the mass customization process.
According to the three aforementioned dimensions, as well
as literature review, relevant performance assessment
methodologies are introduced in the subsequent section.

4 Performance Assessment Methodologies
It has for long been recognized that performance assessment
has an important role to play in the efficient and effective
management of organizations [Kennerley & Neely, 2003].
This topic has, as reckognized by among others [Folan &
Browne, 2005], also gained focus in an ever-increasing
number of academic fields.
 The research on performance assessment was initiated in
management accounting in the beginning of the 20th
century, and later gained a broader role into non-financial
disciplines, such as operations management, marketing, and
human resource management [Chenhall & Langfield-Smith,
2007]. Organisational performance is as highlighted by
[Cameron, 1986] among others, by no means a simple
phenomenon; rather, it is a complex and multidimensional
concept. There are several purposes of conducting
performance assessment, [Melnyk et al., 2004] highlights
one which quite accurate defines the purpose of
performance assessment in this context;
“closed-loop deployment of organizational strategies,
allowing relevant information to feed back to the
appropriate points facilitating decision and control
processes”.
Assessment of organisational performance, in order to
provide control information, has split into two main streams
in literature; one stream focusing on metrics, performance
measures, performance measurement systems, and
approaches to performance management, e.g. [Folan &
Browne, 2005; Melnyk et al., 2004; Neely et al., 2005]. The
other stream of literature, which is dominatantly within
quality management literature, focuses more on the use of
capability maturity frameworks, in the assessment of
organisational capabilities, e.g. [Maier et al., 2012].
Despite different approaches and focus, the two streams of
literature both provide methodologies for feedback,
recommendations and control information enabling
assessment of an improvement effort. In order to clarify
what performance assessment methodologies are
appropriate, central contributions within each of these
streams are reviewed in the following, and reference is
given to the three performance dimensions identified in
above.
The performance measurement methodologies are assessed
agains three criterias:
1) What is measured? Do the methodology encompass

performance assessment by quantitative performance
measures or assessment of organizational capabilities?

Levers Performance

Capabilities

Behaviour

Contingencies

Levers
CN

Performance

CN Capabilities

CN Process

Technical Social

Feedback

Technical Social
Mass Customization

Performance

2 3

1

Simon Haahr Storbjerg, Kjeld Nielsen, Thomas Ditlev Brunoe 89

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

2) Non domain-specific? Are the methodology non
specific for a particual domain, i.e. are the
methodology more generally applicable.

3) Operationalizable? Are the methodology
operationalizable, i.e. not only conceptual.

Only the performance measurement methodologies meeting
the three requirements are introduced in the following.

4.1 Performance Measurement and Management
Performance measurement has its roots in early accounting
systems, the first financial ratios and budgetary control
procedures was developed in DuPont and General Motors
during the early 1900s [Neely et al., 2005]. Since then the
demands from managers, to assess the effectiveness and
efficiency of specific areas, have resulted in a proliferation
of approaches to performance measurement [Chenhall &
Langfield-Smith, 2007]. Today, basically all areas of an
organisation are in the scope of performance measurement
and management, each with distinct perspectives and
purposes.
The research on performance measurement can according to
[Folan & Browne, 2005], be said to give recommendations
on four different levels or dimensions. Recommendations
for:
1) Individual performance measures
2) Structural frameworks (set of performance measures)
3) Procedural frameworks (process of building

performance measures systems)
4) Performance measurement systems (the integration of

the above)
The term performance framework refers, as stated in [Folan
& Browne, 2005], to the active employment of particular
sets of recommendations. What is in common for most of
the performance measurement frameworks and systems are,
that the performance measurement boundaries, dimensions
and relations in between the measures are given.
Rather than giving an extensive review on literature on
performance measurement and management, the objective
of this paper is more to clarify performance assessment
methodologies relevant for choice navigation.
Based on this focus, the literature review concentrates on
performance measurement systems and structural
frameworks. Literature on individual metrics and literature
on procedural frameworks are thus omitted. For a review of
individual performance measures we refer to [Chenhall &
Langfield-Smith, 2007] . Similarly, for a more extensive
review of the available performance measurement
frameworks we refer to [Folan & Browne, 2005; Neely et
al., 2005; Pun & White, 2005].
The performance measurement methodologies found
relevant based on the criterias listed in the following. For
each method, it is in brackets indicated, which of the
performance assessment dimensions, depicted at Figure 3,
the metholody is supporting.

AMBITE performance cube [2,3]
The structural performance framework introduced by
[Bradley, 1996] is specifically designed to suit a so called

Business Process Reengineering process. The framework
consists of three dimensions:

• Business processes: customer order fulfilment, vendor
supply, engineering, manufacturing, etc.

• Competitive priorities: time, cost, quality, flexibility,
environment

• Order-delivery type: make-to-stock, assemble-to-order
make-to-order, engineer-to-order.

With regard to these three dimensions, combinations of
different strategic performance indicators (SPI’s) can be
generated. Each of these strategic performance indicators
can be broken down into lower level indicators. This
breakdown is done context specific, and the performance
indicators are thus customised to the context of application.
In addition to the structural framework [Bradley, 1996] also
introduce a procedural framework for PM system design.
This describes how to link the performance indicators with
the company’s strategy statement and business processes.

Balanced Score Card (BSC) [2,3]
One of the most recognized and broadly applied
performance systems or frameworks is the BSC, which was
developed by [Kaplan & Norton, 1992]. The BSC approach
gives a holistic view of the organization by simultaneously
looking at four different perspectives on performance; (1)
Financial, (2) internal business, (3) customer, (4) innovation
and learning. BSC is based on this a good example of a
performance assessment system that employs a balanced set
of financial and non-financial measures. The BSC approach
is based on the principle that a performance system should
provide managers with sufficient information to address the
following questions:

• How do we look to our shareholders (financial
perspective)?

• What must we excel at (internal business perspective)?
• How do our customers see us (customer perspective)?
• How can we continue to improve and create value

(innovation and learning perspective)?
The performance measures to be utilized in the BSC system
is initially to be formulated during the system development
process, according to the BSC system design methodology..
Based on this, no performance measures are explicitly pre-
defined by the approach.

Comparative Business Scorecard [2,3]
With point of departure in the balanced scorecard, [Kanji,
1998] introduced the Comparative Business Scorecard. This
framework is based on adaption of TQM principles to
monitor progress and performance toward towards
excellence. To enable this the performance measures
focuses on the drivers of success; delight the stakeholders,
ensure stakeholder value, process excellence and
organisational learning.
As noted in [Kanji, 1998] this framework is merely an
attempt to go a step further and extend the understanding of
the four BSC perspectives. The framework is in
methodology and structure, thus not radically different than
the BSC.

90 Simon Haahr Storbjerg, Kjeld Nielsen, Thomas Ditlev Brunoe

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

General Motors Integrated Performance Measurement
System [2,3]
This integrated performance measurement system is an
outcome of significant investments within General Motors
in the early 90’s, in the design of a performance
measurement and feedback system, consisting of 62
measures [Gregory, 1993]. The framework is, in order to
provide valuable input in a complex organisation, designed
to be applied at various organisational levels, with specific
measures for each level. The measures can generally be split
in measures of results, e.g. quality and responsiveness, and
measures of the process of strategy implementation. The
measures ensures that employees retain their focus on
continuous improvement through teamwork in the key
business activities.

Integrated Performance Measurement Framework [2,3]
Similarily to the approach of General Motors, the Integrated
Performance Measurement System of [Medori & Steeple,
2000], encompasses multiple measures. The structural
performance framework is composed of five sub-systems
each with distinct purposes of performance measurement,
and each with different performance measures. The five
sub-systems of the performance framework interact and co-
ordinate in a controlled fashion. The integrated performance
framework does not include any procedural elements,
besides a set of principles that should be considered
alongside the framework.

Performane Prism [1,2,3]
The Performance Prism framework introduced by [Neely et
al., 2002] offers a new approach to measuring organisational
performance in that it integrates strategy, capabilities and
performance measures. The framework is built upon the
argument that one of the greatest fallacies of measurement
design is that performance measures should be derived from
strategies.
The performance framework includes five inter-related and
weighted aspects;
1) Stakeholder satisfaction; who are the organization's key

stakeholders and what do they want and need?
2) Stakeholder contribution; what contributions does the

organization require from its stakeholders?
3) Strategies; what strategies does the organization have to

put in place to satisfy the wants and needs of these key
stakeholders?

4) Processes; what critical processes does the organization
need to operate and enhance these strategies?

5) Capabilities; what capabilities does the organization
need to operate and enhance these processes?

To each of the aspects of the framework specific
performance measures are given, accompanied by their
results, trends, targets, standards, initiatives and action
plans. These data-sets are included in scorecards to facilitate
the performance management. The measurements are
furthermore connected with each other through sets of
hypothetical relationships called "success map". Together
the five viewpoints provide a comprehensive and integrated
framework for managing organisational performance.

Results and Determinants Matrix [2,3]
The performance measurement framework introduced by
[Fitzgerald et al., 1991] is especially developed for the
services businesses. The framework employs a distinction
between measures of results, and measures of the
determinants of the results. The frame work involves several
measures, e.g. competitiveness, liquidity, capital structure
and market ratios, that according to the author do not vary
across the three generic service types, which is identified.

Strategic Measurement Analysis and Reporting
Technique (SMART) [2,3]
The Strategic Measurement Analysis and Reporting
Technique (SMART) system, also known as the
Performance Pyramid, is designed by [Lynch & Cross,
1992]. The system is designed with the intent of creating a
management control system of performance indicators, that
can assist in defining and sustaining organisational success.
The framework employs a hierarchical view of business
performance measurement, in the sense that it is modelled
as a pyramid with four hierarchical levels of objectives and
measures. The SMART system includes a 10 step
procedural framework describing the performance
assessment process.

Structural Performance measurement matrix [2,3]
[Keegan et al., 1989] have proposed a structural
performance measurement framework which seeks to
integrate different dimensions of performance. The
framework is modelled as a 2x2 performance measurement
matrix, that categorises performance measures based on two
dimensions; financial versus non-financial and internal
versus external.

In addition to the performance measurement systems
described in above, a number of more conceptual
performance measurement systems have been identified;
Dynamic Performance Measurement Systems (DPMS)
Integrated Performance Measurement Systems (IPMS),
Framework for multinational companies, and the ICAS
performance measurement framework. Furthermore, a
number of more procedural focused performance
measurement systems or frameworks have been identified,
for an overview of these we refer to [Browne et al., 1988].

4.2 Capability Assessment Methodologies
The assessment of organisational capabilities, is another
promising way of providing feedback and control
information in process improvement initiatives. The
purposes or drivers for adopting a capability based approach
to performance assessment are however, as highlighted by
[Maier et al., 2012], other than process improvement. Some
might adopt capability assessment based on imposed
conformance requirements. In other cases customers may
explicitly require compliance with certain frameworks, or
the competition on the market place may implicitly require
compliance.
Capability assessment frameworks are generally designed to
assess the maturity of either the entire organization, or a

Simon Haahr Storbjerg, Kjeld Nielsen, Thomas Ditlev Brunoe 91

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

selected domain, e.g. process or functional area. The
capability assessment is typically conducted by appraisal of
the activities done, against a predefined set of criteria’s,
which most often is gathered in a framework. Process
improvement is a central Total Quality Management (TQM)
concept, and much of the research on capability maturity
assessment, has been done within quality management. The
use of capability maturity assessment frameworks has since
the concept of measuring maturity was introduced in the
early 90’s proliferated across a multitude of domains.
The work on capability framework can generally be split up
into capability maturity models, and capability grids, which
according to [Maier et al., 2012] can be distinguished on
three aspects; work orientation, mode of assessment and
intent.
As with the performance measurement frameworks, the aim
of this paper is not to conduct an extensive review, due to
this only the grids and maturity models that are identified as
relevant in this context, are addressed in the following. For a
more comprehensive review of capability assessment
frameworks we refer to [Maier et al., 2012].
Based on an extensive literature search [Maier et al., 2012]
have identified 61 maturity grids. Before conducting the
review, the number of methodologies for review have been
narrowed down to 24 based on requirement to among other
things a grid-based approach. Utilizing the criterias from
section four in the review of these grids, five grids have
been identified relevant.
Similarly [Kohlegger et al., 2009] review based on
extensive literature search, and preliminary filtering, 5
maturity models. If the three criterias listed introductory in
section 4 are utilized in evaluation, only the CMM model is
found relevant.
The capability assessment metholodgies found relevant is
described in the following. It is for each indicated in
brackets which of the performance assessment dimensions
depicted at Figure 3 the metholody is supporting.

Capability maturity models (CMM) [1]
The Capability Maturity Models (CMM) was first
developed at the Software Engineering Institute (SEI) at
Carnegie Mellon University [Paulk et al., 1993]. Where the
focus of the first CMM models was to support assessment
software development within a number of sub-processes, an
integrated capability maturity model (CMMI) has later been
introduced [Chrissis et al., 2003].
The integrated model consists of 22 process areas, and
supports product development in general. The capability
maturity model works as a multi-level maturity ranking
process, where a number of important areas, relative to an
organisations’ performance, have been clarified. For each of
these areas a number maturity levels has been defined, each
with distinct capabilities, i.e. practices, methods, skills, tools
etc. By auditing the practices done in a company, the
capabilities and maturity levels can be identified. Due to
this, progressively greater levels of performance are
reflected, as an organisation matures in general or within
specific areas.

Communciation Grid [1]
Based on the stand that effective communication is key to
avoid problems within engineering design, the
communication maturity grid has been developed by [Maier
et al., 2006]. The purpose of this framework is to assess the
maturity of the communication of the engineering design
activities. The grid measures the maturity within 5 process
areas against four generic maturity levels.

Design Process Audit Grid [1]
A good design is key for company success. Based on this
[Moultrie et al., 2007] has developed the design process
audit grid. The grid is developed to assess the maturity of
the design processes within SME’s. Based on 24 process
areas the activities in design from requirements capture to
introduction in manufacturing are asessed against four
maturity levels.

Innovation Audit Maturity Grid [1]
The innovation audit maturity which is introduced by
[Chiesa et al., 1996], focuses on the product development
processes through which innovation and innovation
management is performed. The grid consists of 8 process
areas each with 2-4 sub-questions. The audit methodology
uses a two level approach a rapid assessment and an in-
depth audit.

Product and Cycle time Excellence Maturity Grid [1]
The purpose of the Product and Cycle time Excellence
(PACE) maturity grid is to assess and improve the
progression of the new product development process
[McGrath & Akiyama, 1996]. The PACE maturity grid
encompasses 10 process areas related to product
development, and measures against four levels of maturity.

R&D Effectiveness Maturity Grid [1]
The maturity grid for measuring R&D Effectiveness is
developed by [Szakonyi, 1994] based on several decades of
experience and work with a number of companies. The
framework measures 10 processes related to R&D.

5 Conlusion & Discussion
There seems to be general agreement between the industry
and academia that the competition on the market place
displays a trend of higher price competition combined with
the demand for customization. The requirement of
companies to meet the individual customers’ demand at a
reasonable price continues to characterize a central
challenge for industrial manufacturers today. Based on this,
successfully managing the radical organizational change
that following it requires to follow a mass customization
strategy, is still an important topic. The purpose of this
paper is to support clarification of a methodology for
assessing the performance of the choice navigation process.
The aim of the research is to enable an improved
management of the organizational change in the process of
building the choice navigation capabilities.
According to the conducted literature review and analysis, a
variety of methods for giving feedback and control
information on performance have been clarified. In

92 Simon Haahr Storbjerg, Kjeld Nielsen, Thomas Ditlev Brunoe

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

answering if any methods are appropriate for giving relevant
feedback information to the process of implementing the
choice navigation capabilities the first step is to review and
discuss the available methods at a typological level.
Two types of performance assessment methodologies are
identified from existing literature on quality management
and process improvement; 1) performance measurement
systems and 2) capability maturity assessment frameworks.
Use of metrics in performance measurement systems enable
the provision of information on the output performance of
the choice navigation process is. As highlighted by [Neely
et al., 2005] this enables that the efficiency and
effectiveness of the process can be quantified.
Another type of input is given if the capabilities in relation
to the choice navigation process are assessed. As noted by
Maier this type of assessment enables that the maturity of
the process, understood as what collective assets, e.g. skills,
routines, tools, systems etc. have been built around the
process can be evaluated.
We consider both types of performance assessment as
highly relevant in giving feedback information to the
process of implementing the choice navigation capabilities.
Based on this we suggest that the discussion is more
centralized on how to actually combine these, than on which
is most beneficial. As a first step in establishing a combined
and customized methodology for performance assessment,
the existing methodologies need to be assessed. For this
purpose the focal paper contributes to existing literature on
mass customization with a socio technical system model
describing which constructs are relevant in the performance
assessment. With the use of this model, the existing
literature on performance assessment is reviewed and
classified. The research thus enables that a performance
assessment metholodogy supporting the building of choice
navigation capabilities can be proposed based on further
research.

References
[Boer, H., et al. 2001] Harry Boer, Sarah Caffyn, Mariano

Corso, Paul Coughlan, José Gieskes, Mats
Magnusson, Sara Pavesi and Stefano Ronchi.
Knowledge and continuous innovation: The CIMA
methodology. International Journal of Operations &
Production Management, 21(4), 490-504. 2001

[Boynton, A. C., et al. 1993] Andrew C. Boynton, Bart
Victor and II Pine. New competitive strategies:
Challenges to organizations and information
technology. IBM Systems Journal, 32(1), 40-64. 1993

[Bradley, P. 1996] P. Bradley. A performance measurement
approach to the re-engineering of manufacturing
enterprises. CIMRU, NUI Galway, 1996

[Browne, J., et al. 1988] Jimmie Browne, John Harhen and
James Shivnan. Production management systems: A
CIM perspective Addison-Wesley UK.1988

[Cameron, K. S. 1986] Kim S. Cameron. Effectiveness as
paradox: Consensus and conflict in conceptions of
organizational effectiveness. Management Science,
32(5), 539-553. 1986

[Chenhall, R. H., & Langfield-Smith, K. 2007] Robert H.
Chenhall and Kim Langfield-Smith. Multiple
perspectives of performance measures. European
Management Journal, 25(4), 266-282. 2007

[Chiesa, V., et al. 1996] Vittorio Chiesa, Paul Coughlan and
Chris A. Voss. Development of a technical innovation
audit. Journal of Product Innovation Management,
13(2), 105-136. 1996

[Chrissis, M. B., et al. 2003] Mary Beth Chrissis, Mike
Konrad and Sandy Shrum. CMMi Addison-Wesley
Boston.2003

[Da Silveira, G., et al. 2001] Giovani Da Silveira, Denis
Borenstein and Flavio S. Fogliatto. Mass
customization: Literature review and research
directions. International Journal of Production
Economics, 72(1), 1-13. 2001

[Davis, S. M. 1989] S. M. Davis. From “future perfect”:
Mass customizing. Strategy & Leadership, 17, 1989

[Fitzgerald, L., et al. 1991] Lin Fitzgerald, Stan Brignall,
Rhian Silvestro, Christopher Voss and Johnston
Robert. Performance measurement in service
businesses Chartered Institute of Management
Accountants London.1991

[Fogliatto, F. S., et al. 2012] F. S. Fogliatto, G. J. C. da
Silveira and D. Borenstein. The mass customization
decade: An updated review of the literature.
International Journal of Production Economics, 2012

[Folan, P., & Browne, J. 2005] Paul Folan and Jim Browne.
A review of performance measurement: Towards
performance management. Computers in Industry,
56(7), 663-680. 2005

[Forza, C., & Salvador, F. 2007] Cipriano Forza and
Fabrizio Salvador. Product information management
for mass customization: Connecting customer, front-
office and back-office for fast and efficient
customization Palgrave Macmillan.2007

[Franke, N., & Piller, F. T. 2003] Nikolaus Franke and
Frank T. Piller. Key research issues in user interaction
with user toolkits in a mass customisation system.
International Journal of Technology Management,
26(5), 578-599. 2003

[Gregory, M. J. 1993] Mike J. Gregory. Integrated
performance measurement: A review of current
practice and emerging trends. International Journal of
Production Economics, 30, 281-296. 1993

[Heiskala, M., et al. 2010] Mikko Heiskala, Juha Tiihonen,
Matti Sievänen and Kaija-Stiina Paloheimo. Modeling
concepts for choice navigation of mass customized
solutions. International Journal of Industrial
Engineering and Management, 1(3), 97-103. 2010

[Huffman, C., & Kahn, B. E. 1998] Cynthia Huffman and
Barbara E. Kahn. Variety for sale: Mass customization
or mass confusion? Journal of Retailing, 74(4), 491-
513. 1998

[Kanji, G. K. 1998] Gopal K. Kanji. Measurement of
business excellence. Total Quality Management, 9(7),
633-643. 1998

Simon Haahr Storbjerg, Kjeld Nielsen, Thomas Ditlev Brunoe 93

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

[Kaplan, R., & Norton, D. 1992] RS Kaplan and DP Norton.
The balanced scorecard- measures that drive
performance. Harvard Business Review, 70(1), 1992

[Keegan, D. P., et al. 1989] Daniel P. Keegan, Robert G.
Eiler and Charles R. Jones. Are your performance
measures obsolete? Management Accounting, 70(12),
45-50. 1989

[Kennerley, M., & Neely, A. 2003] Mike Kennerley and
Andy Neely. Measuring performance in a changing
business environment. International Journal of
Operations & Production Management, 23(2), 213-
229. 2003

[Kohlegger, M., et al. 2009]Michael Kohlegger, Ronald
Maier and Stefan Thalmann. Understanding maturity
models results of a structured content analysis.
Proceedings of I-KNOW, , 9. pp. 2-4.

[Lynch, R. L., & Cross, K. F. 1992] Richard L. Lynch and
Kelvin F. Cross. Measure up!: The essential guide to
measuring business performance Mandarin.1992

[Lyons, A. C., et al. 2012] A. C. Lyons, A. E. C.
Mondragon, F. Piller and R. Poler. Mass
customisation: A strategy for customer-centric
enterprises. Customer-Driven Supply Chains, 2012

[Maier, A. M., et al. 2006] Anja M. Maier, Claudia M.
Eckert and P. John Clarkson. Identifying requirements
for communication support: A maturity grid-inspired
approach. Expert Systems with Applications, 31(4),
663-672. 2006

[Maier, A. M., et al. 2012] Anja M. Maier, James Moultrie
and PJohn Clarkson. Assessing organizational
capabilities: Reviewing and guiding the development
of maturity grids. Engineering Management, IEEE
Transactions On, 59(1), 138-159. 2012

[McGrath, M., & Akiyama, C. 1996] ME McGrath and CL
Akiyama. PACE: An integrated process for product
and cycle time excellence. Setting the PACE in
Product Development, Butterworth and Heinemann,
Boston, , 17-29. 1996

[Medori, D., & Steeple, D. 2000] David Medori and Derek
Steeple. A framework for auditing and enhancing
performance measurement systems. International
Journal of Operations & Production Management,
20(5), 520-533. 2000

[Melnyk, S. A., et al. 2004] Steven A. Melnyk, Douglas M.
Stewart and Morgan Swink. Metrics and performance
measurement in operations management: Dealing with
the metrics maze. Journal of Operations Management,
22(3), 209-218. 2004

[Mortensen, N. H., et al. 2008] N. H. Mortensen, R.
Pedersen, M. Kvist and L. Hvam. Modelling and
visualising modular product architectures for mass
customisation. International Journal of Mass
Customisation, 2(3), 216-239. 2008

[Moultrie, J., et al. 2007] James Moultrie, P. John Clarkson
and David Probert. Development of a design audit tool
for SMEs*. Journal of Product Innovation
Management, 24(4), 335-368. 2007

[Neely, A. D., et al. 2002] Andy D. Neely, Chris Adams and
Mike Kennerley. The performance prism: The
scorecard for measuring and managing business
success Prentice Hall Financial Times London.2002

[Neely, A., et al. 2005] Andy Neely, Mike Gregory and Ken
Platts. Performance measurement system design: A
literature review and research agenda. International
Journal of Operations & Production Management,
25(12), 1228-1263. 2005

[Nielsen, K., et al. 2012] Kjeld Nielsen, Thomas Ditlev
Brunø and Kaj Asbjørn Jørgensen. A FRAMEWORK
STUDY ON ASSESSMENT OF MASS
CUSTOMIZATION CAPABILITIES.2012

[Partanen, J., & Haapasalo, H. 2004] Jari Partanen and Harri
Haapasalo. Fast production for order fulfillment:
Implementing mass customization in electronics
industry. International Journal of Production
Economics, 90(2), 213-222. 2004

[Paulk, M. C., et al. 1993] M. C. Paulk, B. Curtis, M. B.
Chrissis and C. V. Weber. Capability maturity model,
version 1.1. Software, IEEE, 10(4), 18-27. 1993

[Piller, F., et al. 2012a] F. Piller, E. Lindgens and F. Steiner.
Mass customization at adidas: Three strategic
capabilities to implement mass customization.2012a

[Piller, F. T., & Tseng, M. M. 2010] Frank T. Piller and
Mitchell M. Tseng. Handbook of research in mass
customization and personalization: Strategies and
concepts World Scientific.2010

[Piller, F., et al. 2012b]Part 7: Overcoming the challenge of
implementing mass customization Innovation
Management.

[Pollard, D., et al. 2011] Dennis Pollard, Shirley Chuo and
Brian Lee. Strategies for mass customization. Journal
of Business & Economics Research (JBER), 6(7)2011

[Pun, K., & White, A. 2005] KF Pun and AS White. A
performance measurement paradigm for integrating
strategy formulation: A review of systems and
frameworks. International Journal of Management
Reviews, 7(1), 49-71. 2005

[Salvador, F., et al. 2009] Fabrizio Salvador, Pablo Martin
De Holan and Frank Piller. Cracking the code of mass
customization. MIT Sloan Management Review, 50(3),
71-78. 2009

[Szakonyi, R. 1994] Robert Szakonyi. Measuring R&D
effectiveness-I. Research Technology Management,
37, 27-27. 1994

[Trentin, A., et al. 2013] Sales configurator capabilities to
avoid the product variety paradox: Construct
development and validation. Computers in Industry,
2013

[Trist, E. 1981] Eric Trist. The evolution of socio-technical
systems. Occasional Paper, 21981

[Walcher, D., & Piller, F. T. 2011] Dominik Walcher and
Frank T. Piller. The customization 500 (1st edition
ed.). Aachen: Lulu Press.2011

94 Simon Haahr Storbjerg, Kjeld Nielsen, Thomas Ditlev Brunoe

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

What makes the Difference? -
Basic Characteristics of Configuration

Lothar Hotz
HITeC e.V., University of Hamburg, Germany

hotz@informatik.uni-hamburg.de

Abstract

This paper focuses on configuration as a process
that iteratively applies commonly known reasoning
techniques and creates an incrementally growing
configuration description. This approach empha-
sizes the synthesis aspect of configuration, which
continuously acquires requirements and computes
their effects on a configuration in a cyclic way.
We provide the definitions of needed ingredients as
there are partial configuration, configuration deci-
sion, and reasoning for computing entailments of
made configuration decisions. These ingredients
are the basis for implementations of configuration
systems that follow these approach.

1 Introduction
Configuration is the task of composing a valid system de-
scription from known component definitions (configuration
model) and customer requirements. Typical configuration ap-
proaches map this task to reasoning techniques such as con-
straint solving [Sabin and Freuder, 1996; John, 2002], De-
scription Logics [McGuinness, 2003], or Answer Set Pro-
gramming [Soininen et al., 2001]. Through this mapping, ap-
propriate reasoners solve the configuration task by computing
a solution of their respective logical reasoning problems.

These approaches make a fundamental assumption, i.e.
that the requirements of the configuration task can be ini-
tially given, e.g., through a a set of requirements – see also
[Sabin and Weigel, 1998] which call this approach batch con-
figuration. But for many, not simple, configuration tasks
this does not hold [Neumann, 1988; Stumptner et al., 1998;
Fleischanderl et al., 1998]. This is due to the fact, that
only during the configuration experience, when the config-
ured product grows in front of the user’s eye, the user realizes
their own desires and needs [Simonson, 2003]. For example,
during a sales conversation, if a requirement causes the need
of a subsystem, previously not recognized, additional require-
ments come into account that are related to the subsystem.
Thus, the requirements are not completely clear in the begin-
ning but change during the configuration undertaking. Sim-
ple examples are web-based configurators for consumer prod-
ucts such as cars or electronic items that lead the user through

a sequence of web-pages for successively acquiring require-
ments. Other examples are industrial configurators which
firstly acquire features of a system and than configure sys-
tem specific components, like it is described in [Haag, 1998;
Ranze et al., 2002; Hotz et al., 2006] – see also [Sabin and
Weigel, 1998] which call this approach incremental configu-
ration.

These considerations lead to a configuration approach that
combines reasoning techniques with the characteristic of a
configuration process. Process-related subtasks are identifi-
cation of next steps in the configuration process or managing
partial configurations. Especially the retraction of decisions
previously made by a user is a characteristic of configuration
processes [Günter and Cunis, 1992; Hotz and Wolter, 2013].

Configuration approaches that take only a certain reason-
ing technology into account, such as configuration based on
Description Logics [McGuinness, 2003] or pure constraint
processing [Tsang, 1993], have to build an external archi-
tecture (or even user interface) around the reasoning kernel,
which handles configuration process tasks. Such approaches
consider a configuration process as a sequence of changing
but fully defined configuration tasks. However, they leave
the process-related subtasks to the external architecture and
do not integrate them in a configuration system. These ap-
proaches lead to domain dependent non-declarative imple-
mented configuration processes.

If a configuration system integrates reasoning facilities and
process or procedural aspects, such as e.g. [Günter and Cu-
nis, 1992; Stumptner et al., 1998; Fleischanderl et al., 1998;
Günter and Hotz, 1999], the inherent dynamic aspects of con-
figuration tasks can be solved in a general, domain inde-
pendent way, based on the configuration model. This view
is also supported by the early definitions or thoughts about
configuration as a syntheses task, in opposite to an analy-
sis task like diagnosis [Brown and Chandrasekaran, 1989;
Cunis et al., 1989; Günter and Cunis, 1992; Brown, 1996;
Günter and Kühn, 1999].

Other approaches that focus on such aspect of configura-
tion are generative constraints. In [Stumptner et al., 1998] the
incrementing configuration is modeled through specific vari-
ables that are activated if certain parts of a configured system
come into play. This approach is similar to the one defined
in the following, however, we do not map the generative no-
tion to a certain reasoning technology (such as constraints in

Lothar Hotz 95

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

[Stumptner et al., 1998]), but we provide a framework around
a reasoning technology that applies it on subsequently defined
new configuration tasks. This is done by iteratively including
requirement acquisition in the configuration process. Further-
more, we will not concentrate on a certain reasoning tech-
nique, but provide a general framework.

Thus, in this position paper, we elaborate on basic charac-
teristics of the configuration process which lead to a complex
mapping of the configuration task to reasoning techniques.
Newly introduced operators allow a definition of the dynam-
ics of the configuration process. These include definitions for
components and restrictions as well as requirements as usual.
Additionally, they provide notions for partial configurations
and requirement variables. Furthermore, operators for com-
puting requirement variables, acquiring requirements, and for
the actual reasoning will lead to a comprehensive definition
of the configuration problem.

Thus, we focus on the iterative characteristic of configura-
tion, i.e. incrementing configuration with intermediate partial
configurations (see Section 2). By taking this view, the paper
furthermore tries to clarify the relationship of configuration
to other reasoning techniques (see Section 3).

We follow ideas published in [Cunis et al., 1989; Günter,
1995]. However, by introducing process related definitions
and operators, a summary of the needed ingredients is estab-
lished that shall give the basis for process-based configuration
technologies.

2 General Definitions
In the following, through definitions that build on each other,
we develop a definition of a complex configuration problem
that take the iterative character of the configuration process
into account. We develop a general definition of the complex
configuration task that is independent of a certain knowledge
representation, such as logic or constraint-based approaches.

First, we provide the definition of a configuration model.
This model defines all possible configurations in a generic
way. The model represents entities to be configured (such
as hardware components, software modules, or services) and
relations between them.

We here discuss a combination of entities (e.g., represented
with component types or classes) and relations (e.g., repre-
sented with constraints). However, the operators defined in
the following are independent of the representation. For ex-
ample, if a pure constraint-based representation is initially
used, appropriate operators should have to be developed for
supporting the here considered complex configuration tasks.

The definitions are illustrated with an example of compos-
ing a menu with antipasti, main course, and dessert. While
antipasti will always be selected if a hearty menu is desired,
the selection of a dessert cannot be computed from con-
straints. A hearty menu is part of initial requirements, while
the dessert is only selected after the main course, demonstrat-
ing a dynamic requirements acquisition.

Definition 1 (Configuration Model). A configuration model
CM is a generic description of entities of an application do-
main. CM is a tuple 〈Γ,Ψ,Φ〉, where

• Γ is a set of attributed entity models EM ∈ Γ (e.g.
classes or concepts) each representing a set of concrete
entities to be configured. An entity model consists of
named properties. Each property P is a binary relation
that maps from EM to a property domain PDP .

• Ψ is a set of property domains PDP ∈ Ψ of properties
P . A PDP might be a structural property domain (and
P is called structural property) with a set of structural
property values, i.e. an entity model optionally com-
bined with a cardinality. Or it might be a primitive data-
type, such as a number, symbol, or string or a probably
infinite set (e.g. for number ranges) of those, than P is
called data-type property.

• Φ is a set of n-ary relations ER ∈ Φ between properties
of entity models.

Example 1. An entity model with one data-type property, one
structural property, and a n-ary relation representing the fact
that a menu should consist in any case of a main course and
might optionally has an antipasti and a dessert. Depending
on the kind of taste, an antipasti is selected if hearty taste is
desired:

(Entity-Model name: Menu
super-type: Aggregate
data-properties: ((kindOfTaste {hearty light}))
hasCourses:
((AntiPasti :min 0 :max 1)
(MainCourse :min 1 :max 1)
(Dessert :min 0 :max 1)))

(Entity-Model name: AntiPasti
super-type: Part)

(Entity-Model name: MainCourse
super-type: Part)

(Entity-Model name: Dessert
super-type: Part)

(Constraint name: HeartyEqualsToAntiPasti
Menu.kindOfTaste == hearty <=>
Menu.hasCourses HAS (AntiPasti :min 1 :max 1))

For representing concrete components of an application
domain, entity instances are used. First, we define a simple
entity instance, later on we enhance this definition.

Definition 2 (Simple Entity Instance). A SEIEM represents
one concrete entity of the application domain. SEIEM be-
longs to an entity model EM and has all or some properties
of EM. The property values are constant values that belong
to the respective property values of EM.

For representing customer requirements about the desired
configuration, configuration requirements are defined as fol-
lows.

Definition 3 (Simple Configuration Requirememts). Simple
configuration requirements SR are a set of simple entity in-
stances with some properties filled with constant values.

Example 2. Two simple entity instances representing the re-
quirement “Hearty menu with a main course”:

(Entity-Instance name: menu-1
entity-model: Menu
kindOfTaste: {hearty}
hasCourses: {mainCourse-1})

(Entity-Instance name: mainCourse-1
entity-model: MainCourse)

Typically, a configuration task is defined as follows:

96 Lothar Hotz

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Definition 4 (Simple Configuration Task). A configuration
task is defined through an entity model EM and configuration
requirements SR.
Definition 5 (Simple Configuration). A configuration is de-
fined through a set of completely filled configuration in-
stances CI.

A knowledge representation technique allows it to repre-
sent an configuration model and configuration requirements.
Furthermore, it provides reasoning techniques that allow to
solve the simple configuration problem.
Definition 6 (Simple Configuration Problem). CM =
〈Γ,Ψ,Φ〉 be a configuration model. A simple configuration
problem in CM is a tuple 〈CM,SR〉, where SR is a set of
initial simple entity instances. A solution (a configuration) of
the problem 〈CM,SR〉 is a set of simple entity instances that
is consistent with CM and fulfills the configuration require-
ments SR.

How consistency is concretely defined depends on the
knowledge representation. However, in general for structural
properties, consistency means that entity instances belong to
S according to the cardinality descriptions of the structural
property. Thus, structural relations emphasize a configura-
tion being a collection of related entity instances, while n-ary
relations related properties of those instances.
Example 3. A resulting configuration, the constraint infers
the need of an entity instance representing antipasti:

(Entity-Instance name: menu-1
entity-model: Menu
kindOfTaste: {hearty}
hasCourses: {mainCourse-1 antiPasti-1})

(Entity-Instance name: mainCourse-1
entity-model: MainCourse)

(Entity-Instance name: antiPasti-1
entity-model: AntiPasti)

These definition provide the basis for configuration tasks:
a configuration model, the customer requirements, and a
knowledge representation that allows for creating a configu-
ration that fulfills the customer requirements. This definition
makes a basic assumption, i.e. that SR, the set of particular
customer requirements, are given. In simple, one step config-
uration problems, such as parameterization of technical sys-
tems, this is a reasonable assumption. In more complex ap-
plications, the requirements evolve during the configuration
process. This observation leads to further definitions.

First, we enhance the definition of a simple entity instance
by allowing not only constant values for properties but also
subsets.
Definition 7 (Partial Property Domain). Let P be a prop-
erty of an entity instance EI of entity model EM. And let
PDP be the property value of P as defined in CM. A par-
tial property domain PPDP of P is a subset of PDP , i.e.
PPDP ⊆ PDP .

Please note that a specific partial property domain is a
property domain with one value representing a constant value,
e.g. a number of a data-type property or a single instance of
a structural property.
Example 4. Example for a partial property domain of a
structural property with one entity instance and two open car-
dinality definitions:

hasCourses: {mainCourse-1 (AntiPasti :min 0 :max 1)
(Dessert :min 0 :max 1)}

Definition 8 (Terminal Property Domain). A terminal prop-
erty domain T PDP of property P is a partial property do-
main that is marked with terminal. A constant value is auto-
matically marked as terminal. Structural property values or
sets may be marked through the heuristic operator (see be-
low).

Example 5. Example for a partial property domains of a
data-type property indicated as terminal:

kindOfTaste: {hearty [terminal]}

Definition 9 (Entity Instance). An EIEM represents one con-
crete entity of the application domain. EIEM belongs to an
entity model EM and has the same properties as EM. The
property values might be the same as defined for EM or sub-
sets of those, they might be partial or terminal property do-
mains. These partially filled entity instances represent uncer-
tain knowledge about the concrete entity. A completely filled
entity instance has a terminal property domain for each prop-
erty.

Example 6. One partially filled entity instance:
(Entity-Instance name: menu-1
entity-model: Menu
kindOfTaste: hearty
hasCourses: {mainCourse-1 (AntiPasti :min 0 :max 1)

(Dessert :min 0 :max 1)})

Example 7. One completely filled entity instance:
(Entity-Instance name: menu-1
entity-model: Menu
kindOfTaste: {hearty [terminal]}
hasCourses: {mainCourse-1 antiPasti-1 [terminal]})

Definition 10 (Partial Configuration). A partial configuration
PO is a set of partially or completely filled entity instances.

Definition 11 (Configuration Requirememts). Configuration
requirementsR are a set of instances with some property val-
ues set to terminal property domains.

Thus, configuration requirements are a specific kind of par-
tial configuration namely one with instances whose properties
do not have a terminal property domain for each property.
We also call this partial configuration initial partial configu-
ration.

Definition 12 (Final Configuration). A final configuration
FC is a set of completely filled entity instances. Furthermore,
for each structural property of an instance in FC, a related in-
stances exists inFC according to the structural property value
(i.e. the defined entity model and the cardinality).

Now, probably the main step in our definitions follows,
i.e. the introduction of the definition of a variable. Typically,
properties of components are considered as variables and the
configuration task is to provide a value for these variables,
i.e. for the properties of the components. In our definition, a
variable stands for a decision that has to be made for gaining
a final configuration. Thereby, each variable stands for one
property of an entity instance that has to be determined. How-
ever, during the configuration process there might be several
variables for one property, e.g. if a property value is reduced
by the user in several steps.

Lothar Hotz 97

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Definition 13 (Variable). A variable V represents one deci-
sion of setting the value of one certain property. One or more
decisions have to be made for each property of every entity
instance. The variable represents possible outcomes of the
decision through its variable domain Vd. A variable domain
is a property value.
Example 8. Variable representing the decision that antipasti
and dessert shall be selected as courses of a menu:

(Variable
entity-instance: menu-1
property: hasCourses
property-value: {mainCourse-1

(AntiPasti :min 0 :max 1)
(Dessert :min 0 :max 1)})

Definition 14 (Reduced Variable). A reduced variable RV

of a variable V with a domain Vd is a variable with a domain
RVd

with RVd
⊂ Vd. The reduced domain might also be a

terminal property domain. For a structural property with a
structural property value, the subset is a set of instances that
are conform with the cardinality descriptions of the structural
property value.

The reduced variable represents the result of a made deci-
sion.
Definition 15 (Heuristic Operator). A heuristic operatorHO
is an operator that takes a variable V and computes a reduced
variable RV (probably with a terminal property domain) by
some heuristic method, thus: HO: V → RV .

The heuristic operator represents the method for gaining
a reduced variable, e.g. the selection of a default value, the
computation of a function computing a reduced domain for
the variable, or the acquisition of a value for that variable
from the user. Thus, the heuristic operator acquires sub-
sequent requirements that come up during the configuration
process. Furthermore, by reducing a structural property the
heuristic operator incrementally expands the configuration,
because new entity instances are created when reducing the
structural property (see above). A new entity instance has the
same properties and property values as its entity model.
Example 9. Reduced variable created by a heuristic oper-
ator that asks the user, if a dessert is needed, answer was
“yes”:

(Variable
entity-instance: menu-1
property: hasCourses
property-value: {mainCourse-1

(AntiPasti :min 0 :max 1)
dessert-1)})

Example 9 represents the answer to the typically raised
question after a meal “Would you like a dessert?”, which is a
simplistic example for a dynamic requirement acquisition.
Definition 16 (Entailment Operator). An entailment opera-
tor EO is an operator that takes the configuration model CM
(especially the defined n-ary relations), a partial configura-
tion PCi, and one reduced variable RV and computes a new
partial configuration PCi+1 which contains the value of the
reduced variable and all entailments of this reduction, com-
puted by some reasoning method, thus:
EO: CM, PCi,RV → PCi+1.
In the initial case,RV might be empty, i.e.

EO: CM, PC0, → PC1 computing the entailments of the
values in PC0, i.e. the initial partial configuration.

The entailment operator represents the integration of one
made decision into a partial configuration and the computa-
tion of the influences of this decision to the partial configu-
ration. The influences are computed on the basis of the con-
figuration model, especially the n-ary relations, which relate
properties of entity models. An influence or entailment is a
reduction of domains of some variables in PCi. Typical ex-
amples for an entailment operator are the solution of a con-
straint problem or applying Description Logic services.

Example 10. Reduced variable created by an entailment op-
erator that uses the constraint for deciding that an antipasti
is needed if a hearty menu was selected:

(Variable
entity-instance: menu-1
property: hasCourses
property-value: {mainCourse-1

antiPasti-1
(Dessert :min 0 :max 1)})

Definition 17 (Open Issue Operator). An open issue operator
OIO is an operator that takes the configuration model CM
and a partial configuration PC and computes new variables
Vi that have no terminal property domains and are collected
in the set A, thus: OIO: CM, PC → A, with Vi ∈ A.

From Example 6 theOIO computes the variable shown in
Example 8 because of the partial property domain for prop-
erty hasCourses.

Definition 18 (Select Operator). A select operator SO is an
operator that select one variable V out of the set A by some
selection method, thus: SO: A → V .

Now, we define the actual configuration process and iden-
tify its main part, i.e. the configuration cycle. A configura-
tion process starts with an initial partial configuration given
through the requirements of a customer. By successively ap-
plying the above operators the final configuration will be cre-
ated. This process is defined as follows:

Starting from the initial partial configuration IP , EO com-
putes the first entailments and, thus, PC1. Hereafter, the open
issue operator OIO can be applied to PC1 for computing
next variables with non-terminal property domains and builds
A1. The operator SO selects a next variable to be decided V1.
From here the heuristic operator HO reduces the variable’s
domain to RV1. The entailment operator uses the previous
partial configuration (EO(PC1)) for computing the next par-
tial configuration PC2. This way the operators are succes-
sively applied until the final configuration PCn is created and
no more open issues can be identified (i.e. OIO computes an
empty set). In total, we have:

98 Lothar Hotz

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

IP, EO−−→ PC1 OIO−−−→ A1
SO−−→ V1 HO−−→ RV1

EO(PC1)−−−−−−→ PC2 OIO−−−→ A2
SO−−→ V2 HO−−→ RV2

EO(PC2)−−−−−−→ PC3 OIO−−−→ A3
SO−−→ V3 HO−−→ RV3

. . .

EO(PCn−2)−−−−−−−→ PCn−1 OIO−−−→ An−1
SO−−→ Vn−1 HO−−→ RVn−1

EO(PCn−1)−−−−−−−→ PCn OIO−−−→ ∅
Thus, the general configuration cycle is defined as follows:

Definition 19 (Configuration Cycle). A configuration cycle
COC is a sequence of operators OIO,SO,HO, EO as fol-
lows:

PCi OIO−−−→ Ai
SO−−→ Vi HO−−→ RVi

EO(PCi)−−−−−−→ PCi+1

Definition 20 (Complex Configuration Problem).
CM = 〈Γ,Ψ,Φ〉 be a configuration model. A
complex configuration problem in CM is a tuple
〈CM,R,HO, EO,SO,OIO〉, where R is a set of
initial entity instances and HO, EO,SO,OIO the pre-
viously introduced operators. A solution of the problem
〈CM,R,HO, EO,SO,OIO〉 is a final configuration that
was computed by applying the configuration cycle, that
is consistent with CM, and that fulfills the configuration
requirementsR.

Like in the simple configuration problem definition, how
consistency is concretely defined depends on the knowledge
representation. Furthermore, the knowledge representation
defines the entailment operator.

3 Discussion
The commonly used view on configuration is to specify a con-
figuration model and customer requirements as a reasoning
task of a reasoning system, such as a constraint system, and
than solve the reasoning task and present the resulting con-
figuration. This paper provides a view on configuration that
basically iterates these two steps of defining requirements and
reason about them, i.e.:

1. Start from an initial configuration including the require-
ments,

2. compute entailment of the requirements on the configu-
ration (operator EO),

3. create an agenda with not yet made decisions (operator
OIO),

4. select one decision (operator SO),
5. make the decision (operatorHO), and
6. compute its entailments (operator EO),
7. goto Step 3.
The computation of the entailments (Step 2 and Step 6)

correspond to the solution of the reasoning task, e.g. by con-
straint processing. The construction of a reasoning task is
included in the configuration process in the steps 3, 4, and 5.

Thus, the overall schema for configuration as seen in our
approach provides an iterative application of commonly ap-
plied reasoning techniques for configuration. For solving a
complex configuration problem, a configuration system or a
technological approach should realize the operators defined
above.

Of course, there exist variations of the here presented basic
framework. For example, the proposed approach to represent
requirements with instances might be enhanced to complex
requirements that need further reasoning to compute them
[Thäringen, 1995; Kopisch and Günter, 1992]. Or the selec-
tion of a decision may be enhanced to selecting multiple deci-
sions or to let the user select next decisions from the agenda.
Another extension is to include techniques for conflict reso-
lution [Günter and Hotz, 1995; Felfernig and Schubert, 2010;
Hotz and Wolter, 2013]. However, this paper provides the ba-
sic ingredients for solving a configuration task incrementally.
Configuration tools which follow our approach are KON-
WERK [Günter and Hotz, 1999], engcon [Hollmann et al.,
2000], or Plakon [Cunis et al., 1989].

4 Summary
This paper defines the necessary ingredients for a configu-
ration process that iteratively generates a configuration. Be-
sides the typically used reasoning techniques, the process ad-
ditionally supplies steps for creating requirements on the fly
and include them and their entailments in a growing configu-
ration. Enhancements in future work will be the inclusion of
operators for resolving conflicts that might occur during the
configuration process.

References
[Brown and Chandrasekaran, 1989] D.C. Brown and

B. Chandrasekaran. Design Problem Solving - Knowledge
Structures and Conrtol Strategies. Research Notes in
Artificial Intelligence Series. Pitman Publishing, London,
1989.

[Brown, 1996] D.C. Brown. Some Thoughts on Configura-
tion Processes. AAAI 1996 Fall Symposium Workshop:
Configuration FS-96-03, MIT, Cambridge, Massachusetss,
USA, 1996.

[Cunis et al., 1989] R. Cunis, A. Günter, I. Syska, H. Pe-
ters, and H. Bode. PLAKON - An Approach to Domain-
Independent Construction. In Proc. of Second Int. Conf. on
Industrial and Engineering Applications of AI and Expert
Systems IEA/AIE-89, pages 866–874, June 6-9 1989.

[Felfernig and Schubert, 2010] A. Felfernig and M. Schu-
bert. Diagnosing Inconsistent Requirements. In L. Hotz
and A. Haselböck, editors, Proc. of the Configuration
Workshop on 19th European Conference on Artificial In-
telligence (ECAI-2010), Lisbon, Portugal, August 2010.

[Fleischanderl et al., 1998] Gerhard Fleischanderl, Ger-
hard E. Friedrich, Alois Haselböck, Herwig Schreiner,
and Markus Stumptner. Configuring large systems
using generative constraint satisfaction. IEEE Intelligent
Systems, 13(4):59–68, July/August 1998.

Lothar Hotz 99

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

[Günter and Cunis, 1992] A. Günter and R. Cunis. Flexible
Control in Expert Systems for Construction Tasks. Journal
Applied Intelligence, 2(4):369–385, 1992.

[Günter and Hotz, 1995] A. Günter and L. Hotz. Auflösung
von Konfigurationskonflikten mit Wissensbasiertem Back-
tracking und Reparaturanweisungen (Conflict Resolu-
tion with Knowledge-based Backtracking and Repair-
Statement). In A. Günter, editor, ”Wissensbasiertes Kon-
figurieren”, St. Augustin, 1995. Infix.

[Günter and Hotz, 1999] A. Günter and L. Hotz. KON-
WERK - A Domain Independent Configuration Tool. Con-
figuration Papers from the AAAI Workshop, pages 10–19,
July 1999.

[Günter and Kühn, 1999] A. Günter and C. Kühn.
Knowledge-Based Configuration - Survey and Fu-
ture Directions. In F. Puppe, editor, XPS-99: Knowledge
Based Systems, Proceedings 5th Biannual German Con-
ference on Knowledge Based Systems, Springer Lecture
Notes in Artificial Intelligence 1570, Würzburg, March
3-5 1999.

[Günter, 1995] A. Günter. Wissensbasiertes Konfigurieren
(Knowledge-based Configuration). Infix, St. Augustin,
1995.

[Haag, 1998] A. Haag. Sales Configuration in Business Pro-
cesses. IEEE Intelligent Systems, pages 78–85, July Au-
gust 1998.

[Hollmann et al., 2000] O. Hollmann, T. Wagner, and
A. Günter. EngCon: A Flexible Domain-Independent
Configuration Engine. In Proc. ECAI-Workshop Config-
uration, page 94 pp, Berlin, Germany, August 21-22 2000.

[Hotz and Wolter, 2013] Lothar Hotz and Katharina Wolter.
Beyond Physical Product Configuration - Configuration in
Unusual Domains. AI Commun., 26(1):39–66, 2013.

[Hotz et al., 2006] L. Hotz, K. Wolter, T. Krebs, S. Deelstra,
M. Sinnema, J. Nijhuis, and J. MacGregor. Configuration
in Industrial Product Families - The ConIPF Methodol-
ogy. IOS Press, Berlin, 2006.

[John, 2002] U. John. Konfiguration und Rekonfiguration
mittels Constraint-basierter Modellierung (Configuration
and Reconfiguration by Means of Constraint-Based Mod-
eling). Infix, St. Augustin, 2002.

[Kopisch and Günter, 1992] M. Kopisch and A. Günter.
Configuration of a Passenger Aircraft Cabin - based on
Conceptual Hierarchy, Constraints and Flexible Control.
In F. Belli and F.J. Radermacher, editors, Proceedings of
IEA/AIE, Paderborn, 1992. Springer-Verlag.

[McGuinness, 2003] D. L. McGuinness. Configuration. In
Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider, editors, De-
scription Logic Handbook, pages 397–413. Cambridge
University Press, 2003.

[Neumann, 1988] B. Neumann. Configuration Expert Sys-
tems: A Case Study and Tutorial. In Bunke, editor,
Proc. 1988 SGAICO Conference on Artificial Intelligence

in Manufacturing, Assembly, and Robotics. Oldenbourg,
Munich, 1988.

[Ranze et al., 2002] K.C. Ranze, T. Scholz, T. Wagner,
A. Günter, O. Herzog, O. Hollmann, C. Schlieder, and
V. Arlt. A Structure-Based Configuration Tool: Drive So-
lution Designer DSD. 14. Conf. Innovative Applications
of AI, 2002.

[Sabin and Freuder, 1996] D. Sabin and E.C. Freuder. Con-
figuration as Composite Constraint Satisfaction. In Pro-
ceedings of the Artificial Intelligence and Manufactur-
ing Research Planning Workshop, pages 153–161. AAAI
Press, 1996.

[Sabin and Weigel, 1998] Daniel Sabin and Reiner Weigel.
Product Configuration Frameworks - A Survey. IEEE In-
telligent Systems, pages 42–49, 1998.

[Simonson, 2003] I. Simonson. Determinants of Customer’s
Responses to Customized Offers: Conceptual Framework
and Research Propositions. Stanford GSB Working Paper
No. 1794, 2003.

[Soininen et al., 2001] Timo Soininen, Ilkka Niemelä, Juha
Tiihonen, and Reijo Sulonen. Representing Configuration
Knowledge with Weight Constraint Rules. In Alessandro
Provetti and Tran Cao Son, editors, 1st International Work-
shop on Answer Set Programming: Towards Efficient and
Scalable Knowledge, pages 195–201, 2001.

[Stumptner et al., 1998] M. Stumptner, G. Friedrich, and
A. Haselböck. Generative Constraint-based Configuration
of Large Technical Systems. AI EDAM, 12(04):307–320,
1998.

[Thäringen, 1995] M. Thäringen. Wissensbasierte Erfassung
von Anforderungen (Knowledge-based Acquisition of Re-
quirements). In A. Günter, editor, Wissensbasiertes Kon-
figurieren. Infix, 1995.

[Tsang, 1993] Edward Tsang. Foundations of Constraint
Satisfaction. Academic Press, London, San Diego, New
York, 1993.

100 Lothar Hotz

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

(Re-)configuration of Communication Networks in the Context of M2M
Applications

Iulia Nica and Franz Wotawa
Institute for Software Technology

Graz University of Technology, Graz, Austria
{inica,wotawa}@ist.tugraz.at

Abstract

Machine-to-machine (M2M) communication is of
increasing importance in industry due to novel ap-
plications, i.e., smart metering or tracking devices
in the logistics domain. These applications pro-
voke new requirements for mobile phone networks,
which have to be adapted in order to meet these fu-
ture requirements. Hence, reconfiguration of such
networks depending on M2M application scenarios
is highly required. In this paper, we discuss model-
ing for reconfiguration of mobile phone networks in
case of M2M applications and present the founda-
tions behind our tool including the used modeling
language and the reconfiguration algorithm.

1 Introduction
Because of the availability of communication networks al-
most everywhere new applications arise. Besides mobile
phones for accessing the internet or simple making phone
calls, machine-to machine (M2M) communication becomes a
still growing application domain for mobile phone networks.
Connecting home appliances like alarm systems or heating
installations remotely is one application area. Others are
tracking of goods in the logistics domain and smart metering.
The latter deals with metering of electrical power or water
consumption of homes on a fine granular basis of minutes or
hours instead of months or even years. In many countries the
administration enforces the use of smart metering in order to
rise the customer’s awareness of their current consumptions
in order to reduce the need for electricity, water or other re-
sources.

Besides this educational effect, there are other advantages
of smart metering systems. The overall costs for metering
might be reduced because the more labor intensive man-
ual metering is not longer necessary. The supplier of re-
sources gains more information regarding current consump-
tions, which likely improves prediction of consumptions and
further allows for improving the stability of the overall sup-
ply network. This is especially important for power networks
where electricity has to be generated when needed. Unfor-
tunately, power plants cannot be turned on or off without
a substantial delay. Another advantage is that the supplier

gains direct remote access to the interface between the net-
work and customer. This allows for instance turning off con-
sumer loads whenever needed in order to prevent for example
from a blackout.

M2M communication has been a growing market that
causes more and more communication over mobile phone
networks. Hence, mobile phone companies providing the in-
frastructure have to adapt their networks due to future needs.
Moreover, a M2M application provider has to be ensured
that the current mobile phone network is capable of provid-
ing enough resource in order to carry out communication re-
quirements. Within the Simulation and Configuration of Mo-
bile Networks with M2M Applications (SIMOA) project the
objective has been to develop a simulation and reconfigura-
tion environment for smart metering applications in order (1)
to ensure that current mobile phone networks are capable of
providing enough resources (through simulation), and (2) to
give advice for changing either the smart metering solution
or the communication network in cases of lack of resources
(through reconfiguration). Hence, we first simulate a net-
work configuration, in order to check whether this can sup-
port the set of user requirements, and, if the simulation fails
(the requirements can not be fulfilled by the mobile network),
a working reconfiguration of the given system has to be de-
livered.

In this paper, we focus on the SIMOA approach to recon-
figuration comprising the modeling language SIMOL, which
is an object-oriented language, and the reconfiguration engine
that makes use of constraint solving and ideas from diagno-
sis in order to compute system changes. The key concept
of SIMOL is the definition of basic and hierarchical compo-
nents, which are used to represent the desired system. The
behavior of a component has to be provided as set of equa-
tions. If a component is a subclass of another component, the
equations of the superclass are taken together with the equa-
tions of the component in order to specify the component’s
behavior. In SIMOL, it is also possible to assign equations
to specific behavior modes. Such a mode might represent a
potential configuration like stating a component to be active
or inactive in a certain configuration. Alternatively, a mode
might represent the range of values assigned to a certain pa-
rameter.

Another feature of SIMOL is its ability to model the sys-
tems behavior over time. In this case, SIMOL allows for spec-

Iulia Nica, Franz Wotawa 101

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

ifying state transfer functions. Such a function itself is a set
of equations, that connect values of variables between one
state and its successor state. SIMOL does not allow to deal
with continuous time. Only systems which can be modeled
using discrete time can be represented in SIMOL. The deci-
sion to restrict modeling to discrete time via states is due to
the requirements of the smart metering application domain,
where not the continuous evolution of parameters is impor-
tant, but the their discrete values. Besides the model of the
system, also the system’s requirements can be modeled us-
ing SIMOL. Hence, every information needed for stating a
reconfiguration problem can be formalized using SIMOL.

The reconfiguration algorithm is based on model-based di-
agnosis, where the idea is to select one mode for each com-
ponent such that all system’s requirements are fulfilled. This
problem can be easily stated as constraint satisfaction prob-
lem. Hence, we make use of an available constraint solver for
computing simulations and reconfigurations. In the follow-
ing, we discuss the whole SIMOA system architecture, the
SIMOL language, and the reconfiguration algorithm in more
detail. A discussion on related research and a summary of the
content conclude this paper.

2 The SIMOA architecture
In Figure 1, we depict the SIMOA system architecture. The
architecture comprises at the highest level two parts: a graph-
ical user interface (SIMOA M2M GUI) and the configuration
core (ConfigCore). The latter is general and can be used in
various applications, whereas the other is application specific
and has to be tailored accordingly to the requirements. The
configuration core itself comprises a compiler that translates
models written in SIMOL into MINION constraints [Jeffer-
son et al., 2012; Gent et al., 2006]. MINION is a constraint
solver coming with its own constraint language, which is not
easily accessible for non-experts in constraint solving. The
reasons for choosing MINION were the easy integration into
the program written in Java and the very good reasoning per-
formance (being able to solve 8,000 constraints in less than
2 seconds). The MINION program is used in the reconfigu-
ration engine ReConf together with the MINION constraint
solver to compute valid reconfigurations, which are given
back as Results.

The interface between the graphical user interface and the
configuration core is represented by the SIMOL program and
the results obtained from ReConf. The SIMOL program com-
prises the information necessary to specify the system to be
reconfigured and the given pre-specified requirements. The
reconfiguration result is basically nothing else than a set of
possible component modes, that are necessary to fulfill the
requirements, together with the computed values for the at-
tributes. The presentation of these results to the user has to be
implemented in the user interface and is application specific.
In Figure 2, the current user interface of the SIMOA M2M
application is given. This graphical user interface enables the
user to specify a smart metering application, by placing the
meters as well as the cells, which provide access to the mo-
bile phone network, among other components at the appro-
priate positions. Moreover, the user might specify additional

Figure 1: The SIMOA architecture

Figure 2: The M2M user interface for the smart metering ap-
plication

parameters for components. In case of a reconfiguration, the
GUI generates a SIMOL program that makes use of the com-
ponents, their behavior and additional parameters. It is also
worth noting that also the positions of the components in the
map are used. For example, when specifying a base load (that
represents all the non-smart-metering traffic) for the mobile
phone network, the concrete assignment to cells is done con-
sidering the distance between the base load and the cell. If
a base load is not within reach, there is no effect. If a base
load might influence two or more cells, the load is assigned
to each cell accordingly to their distance. For example, closer
cells will have a larger percentage of the communication base
load than cells that are more far away.

The ConfigCore of the SIMOA architecture is general and
can be used in various reconfiguration applications. In this
respect, we have conducted a series of experiments using,
for instance, combinational circuits from the well-known IS-
CAS85 benchmark suite. Due to limitations of the ReConf

102 Iulia Nica, Franz Wotawa

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

part, we do not handle generative constraints. Hence, build-
ing systems from scratch using the given constraints is not
possible in SIMOA. However, to some extent, configuration
of systems is possible by providing a model of a larger sys-
tem, where parts can be activated or inactivated. In our ap-
plication domain there is no impact due to restrictions, be-
cause the network, as well as the M2M application structure,
are already known and only small deviations are possible.
Therefore, providing information regarding structural system
changes and changes in parameter is sufficient. In the next
section, we discuss SIMOL in more detail. Moreover, we in-
troduce a basic algorithm for reconfiguration using SIMOL
programs. For more information regarding the application
domain we refer the interested reader to [Nica et al., 2012].

1. kbase GPRSCell;
2. component P2PMeter {
3. attribute int mdist,codeset,mRate;
4. constraints {
5. mdist = {1..3};
6. codeset = {1..4};
7. }
8. }
9. component FPC {
10. attribute int value;
11. constraints(default) {
12. value = 1;
13. }
14. constraints(x1) {
15. value = {2..4};
16. }
17. constraints(unknown) {
18.
19. }
20. }
21. component BTS {
22. attribute int fpc;
23. constraints {
24. FPC fpc1;
25. fpc = fpc1.value;
26. }
27. }
28. component Cell {
29. attribute int neededR, realR;
30. constraints {
31. BTS b1;
32. P2PMeter s[100];
33. realR=sum([s], mRate)/P2PNo;
34. realR>=neededR;
35. ..
36. }
37. transition {
38. forall (P2PMeter) {
39. if (mdist=1 and codeset=2)
40. codeset.next = {2,3};
41. if (mdist=3 and codeset=2)
42. codeset.next = {2,1};
43. }
44. }
45. } Figure 3: A (partial) SIMOL program

3 SIMOL syntax and semantics
As already said, SIMOL is an object-oriented programming
language. Most of the basic features have been already de-
scribed elsewhere [Nica and Wotawa, 2011; 2012b]. How-
ever, in order to be self-contained, we briefly introduce and
discuss SIMOL’s syntax and semantics. To be more acces-
sible for non-experts in configuration and constraint solving,

we decided to adopt the syntax of Java. The program de-
picted in Figure 3 is a partial model used in our M2M appli-
cation domain. The program comprises 4 components, which
model a Point-to-Point (P2P) individually addressable smart
meter, a base transceiver station (BTS), the number of serv-
ing frequencies (FPC) and a mobile cell. Every component
definition starts with declaring the name of the component.
Within a component, its attributes, constraints, and transitions
are defined. The latter is for defining the next state in order to
model discrete time and state machine models.

Syntax: Since SIMOL has a Java-like syntax, most of the
defined tokens are Java-like, i.e., identifiers for any type of
components and attributes, integers, and boolean literals, sep-
arators, arithmetic and relational operators (+,−, ∗, /,=, <
,>,<=, >=, ! =), comments and also reserved keywords. In
addition, it is also possible to use physical units like Watt (W),
or Ampere (A), etc., for a more realistic description. Another
feature of the language is that the domain of the variables val-
ues can be restricted. In Line 15 of the program depicted in
Figure 3 only the values 2, 3, and 4 are allowed for variable
value.

Every SIMOL program comprises 3 sections: (1) a knowl-
edge based declaration section (Line 1) for organizing the
files similarly to Java packages, (2) an import declaration sec-
tion where knowledge bases can be loaded, and (3) compo-
nent definitions (Line 2 to 45). The first 2 sections are op-
tional, whereas the component definition section is manda-
tory. Each component definition starts with the keyword com-
ponent followed by the name of the component and with an
optional extends followed by a comma-separated list of com-
ponent names. If extends is used, we know that the new
component has one or more super components from which
constraints are inherited.

In every component definition, we firstly define the com-
ponent’s attributes after the attribute keyword. For example,
in Line 3 the attributes midst, code set, and mRate are
defined. All these attributes are of type integer (int). Besides
attributes, constraints can be defined. There are two ways of
doing this. Either we use the keyword constraints directly
followed by a block in surrounding parentheses {}, or we use
the same keyword constraints followed by a mode name un-
der parentheses () and again a block statement. The first defi-
nition of constraints only allows for specifying a single com-
ponent behavior. The other definition makes use of modes
that are needed later on for configuration. For example, in
Line 11 to 19 three modes for the component FPC are defined.
The default mode sets the value of variable value to 1.
The x1 mode restricts the domain of value, where the con-
straint solver can select one value from the range {2..4}when
computing reconfigurations. The last mode (unknown) does
not specify any value.

In the constraint section of a component definition the fol-
lowing types of statements are allowed in SIMOL:

• an empty statement : ;,

• a component instance declaration, with the possibility of
initializing its attributes. See for example Line 24 of the
GPRSCell knowledge base, where a new component

Iulia Nica, Franz Wotawa 103

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

fpc1 is generated as an instance of component FPC.
Using this kind of statements, we define the subcompo-
nent hierarchy in our model, i.e., the partonomy rela-
tions. The cardinality of these relations (i.e., the number
of subcomponents which can be connected to a certain
component) is always finite.

• an arithmetic or/and boolean expression

• a conditional block starting with the keyword if and op-
tionally followed by an else.

• special functions like forall, exist, sum, product, min,
and max, that allow to state constraints over an array of
instances or values. For example, in Line 33 we sum the
mRate attribute of all P2PMeter stored in variable s.

In addition, models written in SIMOL might be described
over discrete time. For this purpose SIMOL makes use of
the transition section. Within the transition section the new
values of some, but not necessarily all variables, have to be
defined. In our running example Line 37 to 43 define the next
values of the codeset variables for all P2PMeters. In or-
der to distinguish the new value of a variable in the successor
state we make use of the keyword next. It is worth noting
that in the transition section we can use all statements from
the constraint section.

Semantics: The following informal definition of the se-
mantics of SIMOL relies on mathematical equations. In par-
ticular the idea behind the semantics is to map all constraints
that are assigned to one component to a set of equations. This
also requires the combination of equations in case of multi-
ple inheritance and component instances. In the first part of
the definition of the semantics we ignore discrete time. We
discuss this issue later in this section.

For each component C defined in SIMOL we assume a set
of equations constr0(C), representing the set of constraints
within the constraints(mode) { . . . } blocks. Then each con-
straint Cmode within a constraints(mode) { . . . } block con-
tributes to constr0(C), only if mode is active. Hence, we
can define this as a conditional mode constraint Ccondmode

:
if(mode is active) Cmode must be satisfied and therefore
constr0(C) becomes:

constr0(C) =
⋃

mode∈MODES(C)

constrmode(C)

where MODES(C) is the set of functional modes, de-
fined for component C, and constrmode(C) is the set of con-
ditional mode constraints.

Moreover, the component C also receives equations from
its super components and the instances used in the component
definition. Because of the possibility of having more than
one instance of a component, we have to rename the vari-
ables used in the constraints of an instance. For this purpose,
we assume a function replace that takes constraints M and a
name N and changes all variables x in M to N.x. Hence, the
set of equations that corresponds to a particular component C
is given by the following definition:

constr(C) = constr0(C) ∪ constrI(C) ∪ constrV (C)
where constrI are the constraints inherited from the super

components of C

constrI(C) =
⋃

C′∈super(C)

constr(C ′)

constrV are the constraints coming from the components
used in the definition of C (and requiring variable renaming
using the function replace that add a new pre-fix to the vari-
ables used in the components in order to make them unique)

constrV (C) =
⋃

(C′,N)∈vd inst(C)

replace(constr(C ′), N)

Each constraint within the constraints { . . . } block con-
tributes to constr0(C) as follows:

• Cattr val : attribute-equals-value/s constraints, formu-
lated with = operator and applied on component at-
tributes together with one single integer/boolean value
or with a set of values;

• Cattr attr : attribute-equals-attr constraints, formulated
with = operator and applied on component attributes;

• Cnum : numeric constraints, formulated with basic rela-
tional operators over numeric expressions;

• Ccond : conditional constraints,
if(Cx is satisfied) Cy must be satisfied else Cz

must be satisfied;

• Cexist : existence constraints,
exist(at least(NR) |at most(NR)|NR,C,ATTR =
V ALUE), with the meaning that at most, at least or
exactly NR components of a given type C have
ATTR = V ALUE.
Note that the forall, sum, . . . constraints are similarly
defined.

How to handle time? Within the transition section we have
constraints that define a relationship between the variables of
a state and its successor state. In order to represent states,
we introduce an index that is assigned to each variable used
in constr(C). Hence, what we do is to define constraints
that hold in each state i ∈ {0, . . . , s}, where s represents the
maximum number of considered states within a reconfigura-
tion model. These constraints are obtained from constr(C)
by adding an index i to the variables. We represent these
constraints using the function constri(C). For example, if
value = 1 is element of constr(C), then value 4 = 1
is element of constr4(C). Such constraints are valid within a
state and therefore called state constraints.

In addition to state constraints we require transition con-
straints. The transition constraints can be easily computed
from the transition section. In principle we make use of the
same translation as in the constraints block, but also take
care of the next attribute assigned to variables. If a variable
v has such an attribute and we consider state i we replace

104 Iulia Nica, Franz Wotawa

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

v.next with v i+ 1. Variables v without the next attribute
are changed to v i. Hence, we obtain all transition constraints
transi(C) for state i and component C.

In summary, the constraints for the whole SIMOL program
can now be obtained as follows:

constr =
⋃

i∈{0,...,s}

⋃

C

(constri(C) ∪ transi(C))

Hence, the set of the obtained equations represents the be-
havior of the SIMOL program. It is worth noting that we
took the semantic definition based on equations from the se-
mantics of Modelica [Fritzson and Bunus, 2002]. In contrast
to Modelica the handling of time is different as well as some
of the functions that can be used within SIMOL.

4 Reconfiguration in SIMOA
Before stating a configuration algorithm, which is based on
the diagnosis algorithm ConDiag [Nica and Wotawa, 2012a],
we introduce and discuss some basic definitions. We first
formalize the reconfiguration problem. The reconfiguration
problem requires information on the current system and the
new requirements. Note that the current system may fulfill
the given requirements. In this case no changes of the cur-
rent system are required. For the information needed of the
current system we follow a component-oriented engineering
approach and assume that the structure as well as the behav-
ior has to be represented. The behavior of course has to cap-
ture those aspects relevant for configuration. In particular the
functionality of the system has to be modeled.

In addition we assume that for each component of the sys-
tem we know how to reconfigure the component. Here we
borrow the idea coming from Model-Based Diagnosis (MBD)
[Reiter, 1987; de Kleer and Williams, 1987] and introduce
modes for components. Hence, every component has at least
one mode. We assume the default mode to be the stan-
dard mode of a component, and all other modes to be po-
tential reconfigurations of this component. For simplicity,
we introduce a function modes : COMP 7→ MODES
mapping components from COMP to their MODES. At
least default has to be element of modes(c) for all compo-
nents c ∈ COMP . The SIMOL language allows for spec-
ifying models of systems comprising components and their
modes. For example, in lines 2–27 of our running example
from Figure 3 the components P2PMeter, FPC and BTS
are defined. P2PMeter and BTS only have one mode (i.e.,
the default mode), whereas for FPC, 3 modes (default, x1,
and unknown) are defined.

Besides the structure and behavior of the system, we have
to define the new system requirements. System requirements
in our context are nothing else than constraints, which a sys-
tem has to fulfill. For example, we might say that the mobile
phone network has to be capable of servicing 100 smart me-
ters at once in a particular area, given the communication re-
quirements of the smart meters. In the context of SIMOA this
information again is specified using SIMOL. For example,
lines 28–45 of the program from Figure 3 are for specifying
exactly those requirements.

Definition 1 (Reconfiguration problem) A recon-
figuration problem can be defined as a tuple
(KB,COMP,MODES), where KB = SD ∪ REQ
is the knowledge base comprising the model of the system
SD and the requirements REQ, COMP is a set of system
components, and MODES is the set of functional modes for
the elements of COMP .

The reconfiguration problem consists in searching for an
assignment of modes to each component, such that the knowl-
edge base together with this assignments is satisfiable.

As already mentioned, all information regarding the recon-
figuration problem can be obtained from SIMOL programs.
The program from Figure 3 allows us to derive the knowledge
base KB, which is the set of equations constr representing
the semantics of the SIMOL program, the set of components
COMP = {P2PMeter,FPC,BTS,Cell}, and the set of
modes MODES = {default, x1, unknown}.
Definition 2 (Mode assignment) Given a set of components
COMP and a set of functional modes MODES. A mode
assignment M is a function M : COMP 7→ MODES
mapping each component to one of its modes, i.e., for all
c ∈ COMP :M(c) ∈ modes(c).

Having now all ingredients we are able to formally state a
reconfiguration as follows:

Definition 3 (Reconfiguration) Given a reconfiguration
problem (KB,COMP,MODES). A mode assignment M
is a valid reconfiguration iff KB ∪ {M(c)|c ∈ COMP} is
satisfiable.

In reconfiguration we are interested in finding mode as-
signments that do not imply too many changes. Hence, we
can use the number of required system changes to indicate
the optimality of a reconfiguration. The number of changes
necessary in a mode assignment is the number of used modes
that are not equivalent to the default mode.

Definition 4 (Number of changes) Given a reconfiguration
M for a reconfiguration problem (KB,COMP,MODES).
The number of changes (NOC) of M is equivalent to the
number of modes in M deviating from the default modes,
i.e., NOC(M) = |{M(c)|c ∈ COMP ∧M 6= default}|.

We say that a reconfiguration M is optimal with respect to
its NOC if it is minimal, i.e., there exists no other reconfigu-
ration M ′ with NOC(M ′) < NOC(M). This definition of
minimality corresponds to cardinality minimality in diagno-
sis, which is different from the usually used subset minimality
of diagnosis (see [Reiter, 1987]). However, for the purpose of
reconfiguration minimality based on cardinality seems to be
a better choice.

After stating the underlying definitions we introduce an al-
gorithm for reconfiguration that is based on ConDiag [Nica
and Wotawa, 2012a]. Computing reconfigurations in our con-
text is nothing else than searching for minimal mode assign-
ments, i.e., mode assignments that are as close to the original
assignments as possible. When assuming that small changes
lead to a satisfiable knowledge base, it would be good to
start search considering small deviations of mode assign-
ments from the default mode first. The number of changes

Iulia Nica, Franz Wotawa 105

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

can be increased if no solution is found. Therefore, an itera-
tive algorithm seems to be sufficient.

Algorithm 1 reconfig(KB,COMP,MODES, n)

Input: A reconfiguration problem
(KB,COMP,MODES) and the maximum NOC
n
Output: All minimal reconfigurations (up to the predefined
cardinality n)

1: for i = 0 to n do
2: CM = {|{M(c)|c ∈ COMP ∧M 6= default}| = i}∪

KB
3: S = P (CSolver(CM))
4: if S 6= ∅ then
5: return S
6: end if
7: end for
8: return ∅

Algorithm 1 reconfig takes a reconfiguration problem and
a maximum number of changes and computes all minimal
reconfigurations. Algorithm 1 is an iterative algorithm that
starts with no changes of modes and continues search if nec-
essary up to the predefined value n. The termination criteria
before reaching n is given in Line 4, where an non-empty
solution obtained from the satisfiability check is returned as
result. In case no solution is found the empty set is returned
(Line 8). The CSolver is a constraint solver taking a set of
constraints CM and is expected to return a set of mode as-
signments if a satisfiable solution can be found. Otherwise,
the empty set is returned indicating that no reconfiguration of
the given size is possible. The function P is assumed to map
the output of the solver to a set of solutions.

In the SIMOA prototype implementation we make use
of the MINION [Jefferson et al., 2012; Gent et al., 2006]
constraint solver for this purpose, but every other constraint
solver would also be sufficient providing that it is capable of
handling the constraints stored inCM . Line 2 of Algorithm 1
adds a new constraint to the model stating that we are inter-
ested in finding solutions that comprise exactly i modes that
are not equivalent to default.

Algorithm 1 obviously terminates assuming that CSolver
terminates. The complexity is ofO(n ·k) where k is the com-
plexity of CSolver. In the worst case searching for solutions
for a finite constraint satisfaction problem is exponential in
the size of the problem. Therefore, reconfig is also exponen-
tial in the worst case. However, in practice solutions can be
found in a much faster way. See for example the results re-
ported in [Nica and Wotawa, 2012a] and more recently [Nica
et al., 2013]. In these paper search for solutions up to a size of
3 is within seconds even for constraint satisfaction problems
comprising up to 3,800 constraints. Although these results
are for diagnosis, they also can be applied to configuration
because of the similarity of the algorithms.

5 Empirical results

In this section we report on first empirical results obtained
using a SIMOL model of our application domain, i.e., smart
metering. The SIMOL source code has 95 lines of code, de-
scribing a model with one, two, or three cells, where each cell
contains from 7 up to 100 P2PMeter components. When
compiling the SIMOL program to its MINION representa-
tion, considering at maximum 5 states, we obtain up to 2,387
variables and 7,320 constraints, depending on the the number
of smart meters considered. In principle, there are many pos-
sibilities of mapping SIMOL to MINION and also for com-
puting solutions for a given maximum number of changes
NOC. In the following, we discuss the encoding of SIMOL
modes within MINION and show that the choice of certain
MINION parameters influence the computation of reconfigu-
rations substantially.

The mode encoding in MINION is rather straightforward.
In principle, a mode of a component can be either active or
inactive. Therefore, we map each mode modex to a Boolean
variable in MINION, which is 1 (true) if the corresponding
component is in modemodex, or 0 (false) otherwise. In order
to compute a solution for a particular NOC we have some-
how to maximize the number of default modes in the solu-
tion. In the first version of our implementation we used the
MAXIMISING option of MINION for this purpose. In
addition, we decided to control the way the solver searches
for a solution also by directly specifying the instantiation or-
der for the MINION variables representing a mode. Hence,
we used the MINION variable ordering (V ARORDER) as
well as the corresponding value ordering (V ALORDER)
with the following settings: for all the default mode vari-
ables their values should be searched in descending order,
whereas for the other mode variables the searching should
be done in ascending order. The intuition behind is to prefer
solutions with more default modes to be true over the other
solutions.

For the experiments we made use of a notebook with In-
tel(R) Core(TM) i7 CPU 1.73 GHz and 4 GB of RAM run-
ning under Windows 7. We obtained the results presented in
the upper diagram of Figure 4 for models containing a rather
small number of P2PMeters ranging from 7 to 50. It is
worth noting that when using the MAXIMISING func-
tion the measured running times exceeded 300 seconds for
more than 100 meters (which is unacceptable in some situ-
ations). Hence, we decided to use only the V ARORDER
and V ALORDER and ignore the MAXIMISING func-
tion. From the results depicted in the bottom diagram of
Figure 4 we see a substantial improvement in the mea-
sured running time. Note that the obtained results without
MAXIMISING were always correct.

From the diagram at the bottom of Figure 4 we can extract
two observations. First, when checking only that a given sys-
tem fulfills the requirements, the running time even in case of
100 P2PMeters is within seconds. Second, even for a NOC
of size 6 the reconfiguration time never exceeds 25 seconds.
Since, for the application domain these running time results
are sufficient and the proposed approach is feasible.

106 Iulia Nica, Franz Wotawa

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Figure 4: Comparing running times for reconfiguration, when
the Integer variable domain is fixed to [0..20,000] and the
number of solutions is limited to 1.

6 Related research
The idea of using constraint solvers for configuration is not
new. In [Haselböck and Stumptner, 1991] the authors formal-
ize the configuration and design problem as constraint satis-
faction problem. Similarly in [Stumptner and Wotawa, 1998]
the authors discuss the use of constraint solving for reconfig-
uration and in particular parameter reconfiguration in detail.
The latter also makes use of model-based diagnosis for ob-
taining reconfigurations. In contrast to these previous papers
our reconfiguration algorithm although relying on constraint
solving is different because we compute configurations di-
rectly without making use of hitting set computation [Reiter,
1987; Greiner et al., 1989] or other means for computing di-
agnoses [de Kleer and Williams, 1987].

The application of configuration for solving problems in
the engineering domain has a long tradition. In [Stumptner et
al., 1994; Fleischanderl et al., 1998] the authors describe the
use of generative constraints for configuring large technical
systems comprising thousands of components within a rea-
sonable amount of time. Other applications include the use of
configurations for web services [Felfernig et al., 2002], tech-
nical products [John and Geske, 1999; John, 2000], and even
telecom systems [Emde et al., 1996]. Haag [Haag, 2010] dis-
cussed experiences obtained from product configuration. Al-
though, configuration of technical products from various do-

mains is more or less a well developed and researched field,
the application to the M2M domain that requires models from
the application itself and the used communication infrastruc-
ture is to our knowledge new. Moreover, besides the logical
model also spatial information has to be integrated accord-
ingly in order to come up with a correct model. The SIMOA
approach provides a good bases because it allows to specify
constraints dealing with Boolean and Integer values as well
as discrete time. Moreover, also arrays can be used for mod-
eling. Extensions in the direction of handling floats or strings
can be implemented but require to change the underlying rea-
soning engine.

There are of course many languages for simulation like
Modelica [Fritzson and Bunus, 2002] or Simulink [Henson,
2005] used in industry. However, these languages are mainly
optimized towards simulation and therefore can be hardly
used for reconfiguration. In particular such languages do not
allow under-constrained models, which are necessary for our
purpose when searching for appropriate modes that do not
contradict the given requirements while ensuring that the re-
quirements can be fulfilled. There are some similarities be-
tween Modelica and SIMOL but also many differences in-
cluding the tight integration of component modes and the
handling of discrete time.

Our previous papers mainly deal with either the application
domain [Nica et al., 2012] or the SIMOL language [Nica and
Wotawa, 2011; 2012b]. In contrast to the latter paper, we ex-
tend the SIMOL language using the transition block in order
to handle discrete time in the underlying models. Moreover,
we discuss the algorithm for configuration in more detail in
this paper.

7 Conclusions
In this paper we discussed the underlying language, defini-
tions, and algorithms of the SIMOA approach to reconfig-
uration. Although, the approach has been applied to the
machine-to-machine communication domain, it is not re-
stricted to this domain. Any reconfiguration problem that
can be represented using the underlying modeling language
SIMOL can also be solved using the proposed SIMOA ap-
proach. SIMOL itself is an object-oriented programming
language where components can be defined. The syntax of
SIMOL is close to Java. The semantics has been mainly
taken from the modeling language Modelica. Within the de-
veloped SIMOA prototype SIMOL is converted in MINION
constraints. Hence, MINION is used as underlying constraint
solver. This again does not restrict the approach since chang-
ing constraint solvers is still possible. Only, the conversion of
SIMOL has to be adapted.

Besides SIMOL we also discuss the basic definitions of re-
configuration and state an algorithm that allows to find min-
imal reconfigurations up to a predefined size. Size in this
context is defined as number of necessary changes of the sys-
tem in order to fulfill all constraints. The reconfiguration al-
gorithm derives solutions directly from the constraints (i.e.,
equations coming from SIMOL). This distinguishes this ap-
proach from other similar approaches where search for valid
configurations is often based on conflicts and conflict resolu-

Iulia Nica, Franz Wotawa 107

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

tion. First empirical results indicate that computation is suffi-
ciently fast and that the results are within expectations. In the
future it is planned to further evaluate the approach.

Acknowledgement
The work presented in this paper has been supported by the
BRIDGE research project Simulation and Configuration of
Mobile networks with M2M Applications (SIMOA),which is
funded by the FFG.

References
[de Kleer and Williams, 1987] Johan de Kleer and Brian C.

Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97–130, 1987.

[Emde et al., 1996] Werner Emde, Christian Beilken, Josef
Bording, Wolfgang Orth, Ulrike Petersen, Jörg Rahmer,
Michael Spenke, Angi Voss, Stefan Wrobel, and Schlo
Birlinghoven. Configuration of Telecommunication Sys-
tems in KIKon, 1996.

[Felfernig et al., 2002] Alexander Felfernig, Gerhard
Friedrich, Dietmar Jannach, and Markus Zanker. Se-
mantic Configuration Web Services in the CAWICOMS
Project. In ISWC ’02 Proceedings of the First Interna-
tional Semantic Web Conference on The Semantic Web,
pages 192–205, 2002.

[Fleischanderl et al., 1998] Gerhard Fleischanderl, Ger-
hard E. Friedrich, Alois Haselböck, Herwig Schreiner,
and Markus Stumptner. Configuring large systems using
generative constraint satisfaction. In IEEE Intelligent
Systems & their applications, pages 59–68, 1998.

[Fritzson and Bunus, 2002] Peter Fritzson and Peter Bunus.
Modelica - a general object-oriented language for contin-
uous and discrete-event system modeling and simulation.
In Proceedings 35th Annual Simulation Symposium, pages
365–380, 2002.

[Gent et al., 2006] I. P. Gent, C. Jefferson, and I. Miguel.
MINION: A Fast, Scalable, Constraint Solver. 17th Eu-
ropean Conference on Artificial Intelligence, ECAI-06,
2006.

[Greiner et al., 1989] Russell Greiner, Barbara A. Smith, and
Ralph W. Wilkerson. A correction to the algorithm in Re-
iter’s theory of diagnosis. Artificial Intelligence, 41(1):79–
88, 1989.

[Haag, 2010] Albert Haag. Experiences with Prod-
uct Configuration? http://www.minet.uni-
jena.de/dbis/lehre/ss2010/konfsem/, 2010.

[Haselböck and Stumptner, 1991] Alois Haselböck and
Markus Stumptner. Configuration and design as a con-
straint satisfaction task. In Artificial Intelligence in Design
– Proceedings of the Workshop of the 12th International
Joint Conference on Artificial Intelligence, Sydney, Aus-
tralia, August 1991. Also appeared as Technical Report
DBAI-CSP-TR 91/1.

[Henson, 2005] William Henson. Real time Control and
Custom Components in the Matlab Environment. Tech-
nical report, 2005.

[Jefferson et al., 2012] Christopher Jefferson, Lars Kotthoff,
Neil Moore, Peter Nightingale, Karen E. Petrie, and An-
drea Rendl. TheMinion Manual, Minion Version 0.15.
http://minion.sourceforge.net/, 2012.

[John and Geske, 1999] Ulrich John and Ulrich Geske. Re-
configuration of Technical Products Using ConBaCon. In
Proceedings of WS on Configuration at AAAI-99, Orlando,
1999.

[John, 2000] Ulrich John. Solving large configuration prob-
lems efficiently by clustering the ConBaCon model. In
Proceedings of the 13th international conference on Indus-
trial and engineering applications of artificial intelligence
and expert systems: Intelligent problem solving: method-
ologies and approaches. Springer-Verlag New York, Inc.,
2000.

[Nica and Wotawa, 2011] Iulia D. Nica and Franz Wotawa.
SiMoL- A Modeling Language for Simulation and (Re-
)Configuration. In Workshop on Configuration, pages 40–
43, 2011.

[Nica and Wotawa, 2012a] Iulia D. Nica and Franz Wotawa.
ConDiag – Computing minimal diagnoses using a con-
straint solver. In Proc. 23rd International Workshop on
Principles of Diagnosis (DX), 2012.

[Nica and Wotawa, 2012b] Iulia D. Nica and Franz Wotawa.
The SiMoL Modeling Language for Simulation and (Re-
) Configuration. In Proc. Conference on Current Trends
in Theory and Practice of Informatics (SOFSEM), pages
661–672, 2012.

[Nica et al., 2012] I. D. Nica, F. Wotawa, R. Ochenbauer,
C. Schober, H. Hofbauer, and S. Boltek. Model-based sim-
ulation and configuration of mobile phone networks - the
SIMOA approach. In Proc. of the ECAI 2012 Workshop
on Artificial Intelligence for Telecommunications & Sen-
sor Networks, pages 12–17, 2012.

[Nica et al., 2013] Iulia D. Nica, Ingo Pill, and Thomas
Quaritsch Franz Wotawa. The Route to Success - A Per-
formance Comparison of Diagnosis Algorithms. In Proc.
of the International Joint Conference on Artificial Intelli-
gence (IJCAI), 2013.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32(1):57–95, 1987.

[Stumptner and Wotawa, 1998] Markus Stumptner and
Franz Wotawa. Model-based reconfiguration. In Proceed-
ings Artificial Intelligence in Design, Lisbon, Portugal,
1998.

[Stumptner et al., 1994] Markus Stumptner, Alois
Haselböck, and Gerhard Friedrich. COCOS - a tool
for constraint-based, dynamic configuration. In Proceed-
ings of the 10th IEEE Conference on AI Applications
(CAIA), San Antonio, March 1994.

108 Iulia Nica, Franz Wotawa

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Abstract
Configuration systems have widely been applied to
efficiently address the customization responsive-
ness squeeze of companies dealing with Mass Cus-
tomization. Over time, several frameworks have
been introduced to enable their systematic plan-
ning, analyses, development and implementation.
Traditional research has thereby either focused on
defining modelling techniques for the configuration
model of stable products, on improved configura-
tion algorithms, or on the impact of configurators
on companies’ operations. However, little attention
has yet been paid how the growing need for prod-
uct innovation can effectively been supported. Es-
pecially for engineering companies moving to-
wards Mass Customization, compared to mass pro-
ducers the challenges caused by the complexity of
their products and by the highly uncertain markets
are much higher. This study develops and validates
a framework which enables the use of configura-
tion systems along the introduction of complex
products. It in particular examines (1) what are
suitable development strategies for configuration
systems during product innovation, (2) how prod-
uct development and configuration development
can be aligned and managed, and (3) how supplier
integration can be achieved.

1 Introduction
1.1 Background
With mass customization (MC) companies are aiming at
effectively addressing the customization-responsiveness
squeeze, i.e. the necessity of offering custom tailored prod-
ucts at nearly mass production efficiency [Tseng et al.,
2001]. Since its introduction in the late 1980’s [Davis,
1989], the concept has received much attention from both
practitioners and scientists. General strategies and advanced
IT systems, such as configuration systems (CSs), have po-
tentially helped companies to effectively cope with global
competition and increased customer demands [Salvador et
al., 2009].

1.2 Motivation and outline of the paper
While much of the research has yet focused on developing
models and theoretical frameworks, little empirical studies
have explained the effective introduction of new customized
products [Slamanig et al., 2011]. Notably the use of config-
uration systems has seldom been discussed in the context of
radical innovation processes [Hara et al., 2012]. Thus con-
sidering the challenges of dynamically changing markets
and increasing product complexity [Blecker et al., 2006],
further guidance based on empirical evidence is needed.
Especially for engineer-to-order (ETO) manufacturers who
are moving from an individual customization to a partly MC
these challenges are particularly important. Compared to
mass producers, their products are typically more complex
and high uncertainties of demands make planning activities
more difficult [Rahim et al., 2003].
 The emphasis of this study is therefore to investigate how
new products can be launched effectively in situations in
which product complexity (internal complexity) is rather
high and where only little information about the customer
requirements (external complexity) exists. A particular
attention is thereby paid on how CSs can support product
innovations for significant product renewals.
 Based on a literature study (Section 2), the paper first
examines existing approaches for MC with regard to the use
of CSs in the context of new product introduction. Relevant
frameworks are adapted to better meet the requirements of
ETO manufacturers pursuing MC strategies and product
innovation with product configuration (Section 3-4). Next,
the newly introduced framework is applied on an industrial
case study (Section 5), where a configuration model was
initially developed. The achieved findings and practical
implications are eventually discussed (Section 6).

2 Literature Review
2.1 Product configuration and mass customization
Offering bespoke products to customers affects the entire
product realization process starting from the order acquisi-
tion to the order fulfilment [Forza and Salvador, 2002].
According to Jiao and Tseng (2004) the impact of customi-
zation can be described with the generic domains of an

New complex product introduction by means of product configuration

Martin Bonev and Manuel Korell and Lars Hvam
Technical University of Denmark, Denmark

Martin Bonev, Manuel Korell, Lars Hvam 109

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

organization [Jiao and Tseng, 2004], where to begin with
customer satisfaction can be achieved through the efficient
match of the requirements to the offered solution space of
product variants. Salvador et al. (2009) refer to this process
as assortment matching, in which suitable software helps to
link the existing solution space to customer’s needs [Salva-
dor et al., 2009]. The most common software systems that
enable the realization of an efficient assortment matching
are configuration systems [Forza and Salvador, 2002]. Be-
ing a subtype of a knowledge-based expert systems, CSs
formally represent the product knowledge relevant to the
customer (product features), allowing a complete definition
of possible product outcomes (customized functional fea-
tures) with a minimum of entities [Hvam et al., 2011].
 More recently, researches have investigated the use of
CSs not only as sales tools, but also in support of the entire
specification process, i.e. the order acquisition and order
fulfilment process [Forza and Salvador, 2002]. Helo et al.
(2010) for instance propose a business model for the use of
configuration systems throughout the entire specification
process of a product [Helo et al., 2010]. The authors discuss
how sales configuration can first be used to translate cus-
tomer needs into functional requirements of a product. In
the physical domain, product configuration then matches the
chosen set of functionalities into design parameters. Even
though not implemented in the study, process configuration
can eventually be used to select on a high level suitable
production and logistic steps for the subsequent processes.
Figure 1 below illustrates a generic value chain of a manu-
facturing company including its specification process. De-
pending on the scope of the project, CSs can potentially be
implemented to support wholly or only partly the specifica-
tion process [Hvam et al., 2008].

2.2 Recent trends in product innovation
Obviously, by integrating the different customization do-
mains into the configuration process helps to provide sales-
men with more accurate estimations of time and cost of
existing products. However, over time competition forces
firms to update their established product portfolio. Smith et
al. (2012) discuss two major reasons for companies to regu-
larly work on product innovation:

1. customers change requirements, and
2. product performance needs to be constantly im-

proved [Smith et al., 2012].
Hence, in the first case new products are only introduced
when considerable large discrepancy exists between cus-
tomer needs and the provided functionality of existing prod-

ucts. In the latter case new ideas and technologies keep
customers engaged with the products and thus stimulate
sales [Howard et al., 2011].
 In majority of the cases, working on product innovation is
typically based on existing products, where often more than
70% of the development tasks are related to redesigning,
improving, and extending the products offered to the market
[Ullman, 1997]. To achieve high productivity in the innova-
tion, companies are on the one hand pressured to employ
adequate tools and methods that allow an in-depth under-
standing and managing of knowledge related to products,
processes, as well as to their project environment [Vezzetti
et al., 2011]. On the other hand, to compete on dynamically
changing markets, it has become essential to transform the
innovation process from a linear to a spiral model with short
and direct iterative loops and feedback cycles [Cooper and
Edgett, 2008]. By doing so, initial ideas and prototypes are
immediately tested, where early feedback is used for further
development [Salvador et al., 2009].
 As technology is progressing and being used in more and
more areas of business, recent studies demonstrate that a
high level of technical assessment in innovation significant-
ly improves companies’ business performance. With the use
of advanced technologies, probable solutions, risks and
potentials can initially be evaluated. Moreover, when con-
sidering the costs and benefits from suitable technology in
early stages of the innovation process, the need for technol-
ogy alliances can upfront be detected [Cooper and Edgett,
2008].

2.3 Product configuration, innovation and vendor
collaboration
Despite configuration systems are playing an essential part
in the customization process of manufacturers, in academia
their use has typically been limited to streamline specifica-
tion processes of matured and well established products,
usually offered by one vendor [Blecker et al., 2006; Hvam
et al., 2008; Forza and Salvador, 2008]. Forza and Salvador
(2002) for example discuss the use of a configuration sys-
tem in support of the order acquisition and fulfillment pro-
cess of products from one vendor with high but relatively
simple product variety [Forza and Salvador, 2002]. Hvam et
al. (2006) argue for the use of configuration systems as a
way to improve the quotation process of ETO products or
even systems. By calculating budget quotations, the config-
uration system manages to create sufficiently precise price
estimations offered by one company [Hvam et al., 2006].
Also Haug et al. (2012) investigate the use of CSs in several
manufacturers of rather complex and engineering intensive
products. The authors illustrate the employment of different
CS development strategies in support of specifying the ex-
isting product portfolios [Haug et al., 2012].
 Wang et al. (2009) introduce a framework for assessing
configuration changes of exiting products. Based on the
operational performance of suppliers, a generic algorithm is
used to calculate how a changed part affects the preference
for individual suppliers. The framework is exemplary tested
on a simple electronic device. Even though the authors in-

Sales
Product
design Calculation

Specification process

Customer

Manufacturing
engineering

Purchasing Planning Delivery/
assemblyProduction

Figure 1: Generic specification process

110 Martin Bonev, Manuel Korell, Lars Hvam

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

clude the collaboration of several vendors into their frame-
work, stable products with only minor product changes
(different product variants) for relatively simple products
have been examined [Wang et al., 2006]. Ardissono et al.
(2003) propose a theoretical framework for the use of a
web-based configuration system which strives to enable the
collaboration between different vendors. The authors how-
ever omit to explain how the CSs should be used in praxis,
especially with regard to complex products and radical in-
novation [Ardissono et al., 2003].

3 Research Design and Objectives
From reviewing the literature it can be stated that none of
the mentioned case studies considers how CSs can be used
in the cause of innovation and evolvement of a complex
product family, in particular not together with the coordina-
tion between different suppliers or vendors. At the same
time, prevailing on increasingly competitive markets re-
quires efficient innovation processes which are flexible
enough to quickly adapt to a fast changing environment
[Cooper and Edgett, 2008]. This study therefore aims at
developing a framework which addresses the dilemma of
being innovative on dynamically changing markets and yet
still efficiently providing custom tailored products. In order
achieve practical validity, a case study with a company is
performed. The collaboration is organized through action
research where the researchers were actively involved in a
transformation process [Coughlan and Coghlan, 2004]. The
industrial partner is a start-up company, a contractor with a
strategic collaboration with several ETO companies.
 Already at an early stage of its establishment, the compa-
ny has realized the potential of using advanced IT technolo-
gies and a well thought marketing approach to gain a com-
petitive advantage within its industry. The alliance with the
strategic partners enabled sharing the otherwise unreasona-
ble IT investment and the related financial risks. At the
same time, such a strong collaboration facilitated the ex-
change of knowledge concerning the products and potential
market segments. Rigor of data was insured through forego-
ing interviews and through a series of short action research
cycles conducted in the cause of twelve months.

4 A Procedure for Implementing Complex
Product Configuration in NPD

Several frameworks for the development and implementa-
tion of CSs exist in literature. For the study at hand, a wide-
ly used and well-structured seven phase procedure intro-
duced by Hvam et al. (2008) was chosen. The procedure is
based on the object oriented project life cycle (analysis,
design, implementation and maintenance), and further con-
tains methods for analyzing product ranges as well as the
related business processes [Hvam et al., 2008]. Rather than
describing each of the phases in detail, in the following, we
focus our attention only on the aspects that are critical with
respect to innovation and new product development (NPD).

4.1 Clarifying the innovation strategy

By implementing CS several benefits can clearly be gained
[Bonev and Hvam, 2012]. Yet, when planning and perform-
ing configuration projects with complex products and mul-
tiple users, the desired results are often not being achieved.
According to Haug et al. (2012) a major challenge for the
success of a configuration project is that for complex prod-
ucts, the configuration task is difficult to be estimated. In
result projects often become significantly more costly than
anticipated or companies fail to create prototypes that indi-
cate the potential benefits. Another reason for abandoning
initiated configuration projects is that by implementing a CS
a substantial part of the business processes have to be rede-
signed. In case the required organizational changes are not
widely accepted by the employees, the system will most
likely not be used [Haug et al., 2012]. To overcome these
challenges it is important to establish a clear innovation
strategy that promotes configuration projects which are
likely to succeed and where the risk for failure is kept to a
minimum. Thus, to be able to make reasonable decisions
about the right innovation strategy it is inevitable to make
use of relevant performance metrics. A way of assessing the
performance of NPD is through monitoring the NPD
productivity measured as the output from the NPD process
divided by the input [Coorper and Edgett, 2009]:

𝑁𝑃𝐷 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑆𝑎𝑙𝑒𝑠 (𝑜𝑟 𝑃𝑟𝑜𝑓𝑖𝑡) 𝑓𝑟𝑜𝑚 𝑁𝑃𝐷

𝑅&𝐷 𝑆𝑝𝑒𝑛𝑑𝑖𝑛𝑔

 As indicated in Figure 2 below, in today’s quick changing
business environment the outcome of the NPD can be rather
uncertain. Estimations about long term sales development of
new products remain vague and can cause high risks with
regard to their success on the market [Oriani and Sobrero,
2008].

 In order to increase the NPD productivity and reduce risk
of failure in the more reliable planning horizon, i.e. at an
early stage of the innovation process, early R&D spending
should be kept low. For ETO firms moving towards MC this
can be achieved in two major ways. First, it is beneficial to
establish strategic alliances with reliable suppliers. By shar-
ing and coordinating innovation activities for complex
products and knowledge about customer preferences and
trends, individual investments and risks concerning the
success on the market can be reduced [Pullen et al., 2012].

Figure 2: Effect of sales and spending on NPD productivity

Martin Bonev, Manuel Korell, Lars Hvam 111

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Secondly, for configuration projects the R&D spending is
mainly driven by the development of the configuration
model and by the related IT investment. At an early stage of
the configuration project it is therefore important to be clear
about what are the essential (“need-to-have”) functionalities
the CS needs to have and which of the possible functionali-
ties can be categorized as “nice-to-have”. As the product is
maturing over time and turnover from sales is increasing,
further investment towards the less prioritized functionali-
ties can be taken and the use of the CS can gradually be
extended. From a financial perspective a strategic alliance
and a stepwise configuration development stimulates an
early return on investment (ROI) and increases the probabil-
ity for more successful new product launches. Furthermore,
a stepwise CS implementation encourages employees to
embrace the organizational changes caused by the system,
while its functionalities are being extended over time.
In sum, by involving the strategic partners in the configura-
tion project, investment and risks can be shared and a wider
range of the specification activities can be considered. Hav-
ing set the requirements for the innovation strategy, in the
following steps the some essential characteristics of the
project life cycle will be discussed.

4.2 Developing the specification process
Before starting with a detailed analysis on the planned prod-
uct innovation, if it hasn’t been done yet, it is first useful to
establish an overview over the current specification process
at hand. From a supply chain perspective it is important to
understand how the communication between various stake-
holders is organized and to what extend they are influenced
by the specification process. A typical sales and delivery
process of ETO firms is illustrated in Figure 3 [Brunoe and
Nielsen, 2012]. In contrast to mass producers, at the point of
sales ETO firms usually have only a limited amount of in-
formation specifying the product and a significant amount
of it has yet to be designed [Rahim and Baksh, 2003]. At the
same time ETO firms still need to be able to create legally
binding sales quotes which define the product to a consider-
able level of detail, ensuring that the communicated price
and lead time results in a satisfying profit. Since generating
quotations is no guarantee for receiving an order [Kingsman
and De Souza, 1997], the sales process has to be effective
and very cost efficient. For companies delivering ETO
products the main purpose of having a CS is therefore to
automate the sales and ordering process [Haug et al., 2009].
In result, this initial analysis of the involved specification
activities helps to assess the requirements for the subsequent
automation.
 Next, a TO-BE specification process supported by a CS
can be defined. Scenario 2 in Figure 3 illustrates the most
widespread approach for CS [Salvador et al., 2009], namely
a sales configurator. In other less common situations, ETO
companies might have more benefits from the implementa-
tion of a solely technical CS (Scenario 2). In such a case the
system would function as a design automation system for
generating technical specifications for production. Due to
the involvement of complex calculations, a major challenge

is thereby to cover the entire technical specification [Elgh,
2008]. Next, the simultaneous implementation of both, a
sales and a technical configurator is repressed by the re-
maining two scenarios. While in Scenario 3 two separate
systems would cover the two aspects, Scenario 4 represents
an integrated solution for the configuration. However, as the
integration to other IT systems and to advanced calculation
and CAD applications, such as to Mathcad and Inventor, is a
major cost driver, in the first step this investment it is often
unfeasible.

 Consequently, even though the use of advanced CS can
potentially sustain the entire specification process (Scenario
4), to keep the investment costs and the organizational
changes at a low level, in the first step (Step 1) of imple-
mentation, only the needed process steps are to be assisted
by the system. In the subsequent steps (Step 2 etc.), more
and more activities related to the specification of a product
can be automated. In the majority of the cases it is feasible
to start with the development of a sales CS, as for example
investigated by Salvador et al. (2009). Such a system could
then be used as a marketing tool, where in the introduction
and growth phase of the product life cycle the focus is on
creating customer awareness of the product and on trial of
different product variants [Kotler et al., 2012]. With the
right analytical capabilities [Davenport and Harris, 2007],
companies could quickly uncover customer preferences and
thus further extend their product portfolio towards the re-
quired product features.

4.3 Aligning product analysis and development
with configuration development
Since in most cases product innovation builds upon existing
products [Smith et al., 2012], after clarifying the implemen-
tation steps, an analysis of the most similar product architec-
ture needs to be taken. Ulrich (1995) defines product archi-
tecture as: (1) the arrangement of functional elements; (2)
the mapping from functional elements to physical compo-
nents; and (3) the specifications of the interfaces among
interacting physical components. For the analysis of the
architecture, often the Quality Function Deployment (QFD)
and the Design Structure Matrix (DSM) have widely been
utilized. With their help customers’ needs are identified and
linked into the created product structure [Vezzetti et al.,

Figure 3: ETO specification and delivery process with a stepwise
scenario implementation

Quotation &
Sales

Engineering &
Procurement

Supplier 1

Production
Supplier n

Commissioning

Sale Delivery

Specification process

Production
Supplier 1

Engineering &
Procurement

Supplier n

Scenario 1
Scenario 2

Scenario 4

Sale Configuration Design Automation
Scenario 3 Step 1

Implementation Steps

Step 2
Step 3

?

Sales and Delivery Process

Configuration System Approach

112 Martin Bonev, Manuel Korell, Lars Hvam

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

2011]. The employment of the Modular Function Deploy-
ment (MFD) then enables the creation on decoupled func-
tional units, i.e. modules [Ericsson and Erixon, 1999].

 Another way of representing the product architecture is
through the hierarchy structure of the Product Variant Mas-
ter (PVM) technique. By following the basic principles of
object oriented modelling, such as generalization, aggrega-
tion and association, the PVM technique uses the Unified
Modeling Language (UML) standard [Hvam et al., 2008].
Regardless the chosen modeling technique, with product
platforms in the development process are more stable prod-
uct architecture can be achieved [Meyer and Lehnerd,
1997]. To ensure the collaboration between suppliers of a
complex product, the individual components should be
integrated as separate modules with decoupled functionali-
ties and with clear interfaces to the related product compo-
nents. Figure 4 illustrates the integration of components
coming from different vendors into the entire product mod-
el. While some of the modules may be delivered from dif-
ferent suppliers (indicated by “x-xy” in the figure), for other
modules only one supplier (“Supplier z”) may exist.
 A product model generally aims at representing the phys-
ical components and their functionalities. From an object
oriented perspective, the development of a configuration
model however characterizes the logical combination of
classes and their attributes. Each class may represent physi-
cal components or other important product characteristics.
Such characteristics could e.g. describe geographical, geo-
metrical and functional product aspects, such as the targeted
market or the shape and style of a product. Depending on
the modelling environment of the CS, as indicated in Figure
4 the configuration model can then be illustrated as a PVM.
 Even though the composition of the configuration model
might be slightly different from the one of the product mod-
el, the same structural concerns are relevant for its
knowledge base. Thus, since a growing product complexity
typically leads to an increasing configuration complexity,
wherever possible the configuration structure should consist
of separate configuration modules (classes) with encapsulat-
ed constraints [Tiihonen et al., 1996]. To simplify the mod-

el, also here standard interfaces among modules with a min-
imum number of cross related constraints are beneficial.
Classes which can be carried over across product families
are then to be grouped to platforms.
 Furthermore, in cases where the final product components
are unclear yet, a Concurrent Engineering like approach can
be achieved by the use of a “black-box” configuration
[Whitney, 1988]. In this case configuration classes which
contain dummy attributes and constrains for the presumed
product functionalities can be established in parallel to the
development of the physical product components. Once the
final components and the corresponding supplier specifica-
tions are available, the placeholders created in the CS can be
fed with the actual information. Finally, by using the spiral
model [Cooper and Edgett, 2008; Hvam et al., 2008], a
quick trial and error testing of the CS helps to detect critical
configuration aspects and product components for which the
product information is yet fragmented or not available.

5 Applying the Framework
The described framework for using CSs in the process of
NPD of complex ETO products was tested for validation on
an industrial case study. The thereby gained results will in
the following be briefly discussed.

5.1 Developing the TO-BE specification process at
the case company
Having established and overview of the AS-IS specification
process, a TO-BE specification process for a stepwise CS
implementation was created. The main requirements for
Step 1 were:

1. The specification errors, long lead times and lim-
ited product representation should be improved by
the use of a sales configurator.

2. The sales configurator should:
a. Contain only product features which are

essential for the customer.
b. Store not essential product features as

predefined default values and represent
for the majority of the cases a well-
designed product [Mandl et al. 2011].

c. Be available locally on salesmen’s com-
puters.

d. Provide a sufficiently accurate (95%)
price and lead (delivery) time estimation.

e. Provide a 3D graphical user interface
(GUI) of the product, where a direct im-
pact of the configured commercial fea-
tures on time and cost is to be seen.

f. Generate a quotation for the customer in-
cluding a description of the configured
product.

g. Save the customer’s information and the
configuration status for a later recon-
figuration.

Figure 4: Aligning product model with configuration model

Product Model Configuration Model

Decoupled
modules

Standardized
interfaces

Platforms

Supplier x-xy

Supplier z

Martin Bonev, Manuel Korell, Lars Hvam 113

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

h. Enable the selection of non-standard
choices for better adaptation of the offered
solution space.

3. The remaining specification process should be di-
vided into a configurable technical specification
process and into a non-configurable engineering
and procurement process.

4. The configurable technical specification process
should be supported by a technical product config-
urator, the remaining specifications should be cre-
ated in a traditional manner (through CAD and ad-
vanced calculation systems).

5. Both, the sales and the technical CS should be
based on the same configuration model.

6. The output of each of the SCs should work as input
for the other SC.

7. The (technical) product configurator should:
a. Contain all design specifications of the

product which can be configured within
the CS.

b. Be available on the intranet
c. Estimate price and lead times (production,

delivery, commissioning) as accurate as
possible (ca. 99%).

d. Contain only basic descriptions and static
pictures of the product.

e. Generate technical specifications and
manuals for the involved suppliers.

f. Save the configuration status for a later
reconfiguration.

Figure 5: TO-BE Specification process of the case study

 Figure 5 shows a high level representation for the chosen
initial CS implementation (Step 1). To meet the require-
ments, a variation of Scenario 3 was selected. For the later
steps of implementation (Step 2 etc.), the sales configurator
should be available on the internet, where a wider range of
customer awareness can be achieved. Another aspect e.g.
concerns the functionalities of the technical CS. In later
stages the system could have a direct integration to various

CAD and calculation software, so that a higher percentage
of the whole product specification can be created. However,
since the product consists of components from a number of
different suppliers, currently a complete definition of these
3rd party components appears to be unrealistic.

5.2 Developing the configuration model at the case
company
A generic product model for yet to be developed product
family was created by means of the above described model-
ling techniques. The corresponding configuration model was
done directly in the chosen configuration software. Since
both, the product and the configuration model were extend-
ed over time, the solution space of the models increased
dramatically.

 Figure 6 displays how the number of attributes and con-
strains of the configuration model grew as it was further
completed. The growing complexity of the configuration
model led to a higher computation time and to less control
over the behaviour and the cause-effect relationships of the
system. Hence, several initiatives were taken to reduce the
structural complexity of the model. Two of them will in the
following be discussed.

 To simplify the product structure, first the yet rather inte-
grated construction of the model was redesigned to a more
modular form. As described in the framework, wherever
possible, it was tried utilize modularization, i.e. to make use
of encapsulated classes and thus to reduce the number of
cross relations. Figure 7 shows how despite a further exten-
sion of the model, a decrease from 55% to 30% cross-

Constraints

Attributes

0

2000

4000

6000

8000

10000

12000

14000

Am
ou

nt
 o

f e
nt

iti
es

Figure 6: Progress of the configuration model

Quotation &
Sales

Engineering &
Procurement

Supplier 1

Sale

TO-BE Specification process

Engineering &
Procurement

Supplier n

Sales Configuration Product Configuration

Technical
Specification

Design
Parameters

- 20% Design
Specification

- 60% Default
Specification

- 95% Price
Estimation

- 95% Lead Time
Estimation

- Quotation

- 80% Design
Specification

- 99% Price
Estimation

- 99% Lead Time
Estimation

- Technical specs &
manuals for each
supplier

% of completed
Product Specifications

Commercial
Features

100 %

Time

Figure 7: Reduction of cross-relations within the configuration
model

0%

10%

20%

30%

40%

50%

60%

0

500

1000

1500

2000

2500

3000

Pr
oc

en
t o

f c
ro

ss
 re

la
tio

ns

Co
ns

tr
ai

nt
s

Measuring point

% of cross-relations in constraints and classes Constraints

114 Martin Bonev, Manuel Korell, Lars Hvam

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

relations in the model considerably reduced the number of
needed constraints. Moreover, having encapsulated classes
with little cross-relations provided a better overview over
the entire configuration model and facilitated the inevitable
debugging. In cases of unexpected behaviour, computation
or even system errors, the responsible classes could easier
be detected.

 Another way to reduce the complexity of the configura-
tion structure was to minimize ranges of attributes. Since
not every technically possible attribute value is required by
the customer, the characteristics of each attribute could be
reduced to the tolerance limit. Table 8 exemplary depicts
how a simplification of 4 attributes exponentially reduces
the solution space and hence the structural complexity of the
knowledge base. Instead of using the technical possible
solution, by limiting the ranges with factor 100 the solution
space could be reduced by factor 10^8.

6 Conclusion
When following MC principles, manufacturing companies
have to consider a number of characteristics. The internal
and external complexity is thereby seen as a major challenge
to be handled (Blecker et al., 2006). Especially for ETO
companies the movement towards MC seems to be much
more complex compared to mass producers (Haug et al.,
2009). Their products typically comprise a low degree of
standardization with no or little commonality, their process-
es are seldom automated and they have little control over
their customer portfolio. Our study shows that in order to
better cope with arising challenges, ETO firms need to pay a
particular attention on the planning phase of a new product
introduction and the related product configuration develop-
ment. Besides the foregoing product and process analysis
(Hvam et al., 2008), several additional aspects need to be
considered:

1. ETO companies using product configuration
should collaborate on innovation to reduce risk and
investment and to become more efficient with the
new product launches.

2. Configuration systems should be planned and im-
plemented in steps by using the spiral model, start-
ing only from the most important “need-to-have”
functionalities first.

3. Configuration systems should consider the product
lifecycle objectives of products, focussing first on
the creation of awareness and trial of product vari-
ants.

4. Efficiency can be gained in later steps of imple-
mentation, as functionalities are being extended,
and automation and further integration to other IT
systems is realized.

5. The product structure of new products needs to be
redesigned in order to be configurable, while 3rd
party components should preferably appear as sep-
arate modules with standardized interfaces.

6. Product model and configuration model can be cre-
ated simultaneously, with a focus on stable and
well known components. For yet not finally de-
signed components dummy classes with estimated
functionalities can be created.

7. In order to handle the complexity of the knowledge
base, the configuration model needs to follow the
same objectives as the product structure, namely;
(a) the use of generic and modular yet encapsulated
configuration classes with little cross related con-
straints (standardized interfaces), (b) the imple-
mentation of standardized and decreased attribute
ranges.

References
[Adrissono et. al., 2003] Ardissono, L., Felfernig, A., Frie-

drich, G., Goy, A., Jannach, D., Petrone, G., Schafer, R.,
Zanker, M. A Framework for the Development of Per-
sonalized, Distributed Web-Based Configuration Sys-
tems, Ai Magazine, Vol. 24, No. 3, pp. 93-110, 2012.

[Blecker et al., 2006] Blecker, T., Friedrich, G. Mass cus-
tomization: challenges and solutions. Springer, New
York, 2006

[Bonev and Hvam, 2012] Bonev, M., Hvam, L. Analyzing
the Accuracy of Calculations When Scoping Product
Configuration Projects, Lecture Notes in Computer Sci-
ence, No. 7661, pp. 331-342, 2012.

[Brunoe and Nielsen, 2012] Brunoe., D., Nielsen., P. A case
of cost estimation in an engineer-to-order company mov-
ing towards mass customization, International Journal
of Mass Customisation, Vol. 4., No. 3-4., pp. 239-254,
2012

 [Cooper and Edgett, 2008] Cooper, R. G., Edgett, S. J.
Maximizing productivity in product innovation, Re-
search Technology Management, Vol. 51, No. 2, pp. 47-
58, 2008.

[Cooper and Edgett, 2009] Cooper, R. G., Edgett, S. J.
Lean, rapid, and profitable new product development,
BookSurge, Ancaster, 2009.

[Coughlan and Coghlan, 2004] Coughlan, P., Coghlan, D.
Action research for operations management, Interna-
tional Journal of Operations & Production Manage-
ment, Vol. 22, No. 2, pp. 22-240, 2004.

[Davenport and Harris, 2007] Davenport, T. H., Harris, J. G.
Competing on analytics: The new science of winning,
Harvard Business School Press, Boston, 2007.

[Davis, 1989] Davis, S. M. From “future perfect”: Mass
customizing. Strategy & Leadership, Vol. 17, No. 2, pp.
16-21, 1989.

[Elgh, 2008] Elgh, F. Supporting management and mainte-
nance of manufacturing knowledge in design automation

Table 1: Reduction of unnecessary attribute values

Solution Space of 4 related attributes for Component A and B
Category Solution Space (No. of Combinations) Structural Complexity

Technically possible 19,360,000,000,000 100%
Simplified each attribute by
factor 10 1,936,000,000 0.01%
Simplified each attribute by
factor 100 (tolerance limit) 193,600 0.000001%

Martin Bonev, Manuel Korell, Lars Hvam 115

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

systems, Advanced Engineering Informatics, Vol.
22, No. 4, pp. 445-456, 2008.

[Ericsson and Erixon, 1999] Ericsson, A., Erixon, G. Con-
trolling design variants: Modular product platforms,
Society of Manufacturing Engineers, Dearborn, 1999.

[Fogliatto et al., 2012] Fogliatto, F. S., da Silveira, G. J. C.,
Borenstein, D. The mass customization decade: An up-
dated review of the literature, International Journal of
Production Economics, Vol. 138, No. 1, pp. 14-25,
2012.

[Forza and Salvador, 2002] Forza, Cipriano, and Fabrizio
Salvador Managing for variety in the order acquisition
and fulfillment process: The contribution of product con-
figuration systems, International Journal of Production
Economics, Vol. 76, No. 1, pp. 87-98, 2002.

[Forza and Salvador, 2008] Forza, C., Salvador, F. Applica-
tion support to product variety management, Interna-
tional Journal of Production Research, Vol. 46, No. 3,
pp. 817-836, 2008.

[Hara and Arai, 2012] Hara, T., Arai, T. Encourage non-
designer's design: Continuous value creation in manu-
facturing products and services, Cirp Annals - Manufac-
turing Technology, Vol. 61, No. 1, pp. 171-174, 2012.

[Haug et al., 2009] Haug, A., Ladeby, K., Edwards, K.
From engineer-to-order to mass customization, Man-
agement Research News, Vol. 32, No. 7, pp. 633-644,
2009.

[Haug et al., 2012] Haug, A., Hvam, L., Mortensen, N. H.
Definition and evaluation of product configurator devel-
opment strategies, Computers in Industry, Vol. 63, No.
5, pp. 471-481, 2012.

[Helo et al., 2010] Helo, P. T., Xu, Q. L., Kyllönen, S. J.,
Jiao, R. J. Integrated Vehicle Configuration System -
Connecting the domains of mass customization, Com-
puters in Industry, Vol. 61, No. 1, pp. 44-52, 2010.

[Howard et al., 2011] Howard, T. J., Culley, S. J., Dekon-
inck, E. A. Reuse of ideas and concepts for creative
stimuli in engineering design, Journal of Engineering
Design, Vol. 22, No. 8, pp. 565-581, 2011.

[Hvam et al., 2006] Hvam, L., Pape, S., Nielsen, M. K.
Improving the quotation process with product configura-
tion, Computers in Industry, Vol. 57, No. 7, pp. 607-621,
2006.

[Hvam et al., 2008] Hvam, L., Mortensen, N.H., Riis, J.
Product Customization, Springer, Berlin, 2008.

[Hvam et al., 2011] Hvam, L., Bonev, M., Denkena, B.,
Schèurmeyer, J., and Dengler, B. Optimizing the order
pro-cessing of customized products using product con-
figuration, Production Engineering, Vol 5, No. 6, pp.
595-604, 2011.

[Kingsman and De Souza, 1997] Kingsman, B. G., De Sou-
za, A. A. A knowledge-based decision support system
for cost estimation and pricing decisions in versatile
manufacturing companies, International Journal of Pro-
duction Economics, Vol. 53, No. 2, pp. 119-139, 1997.

[Kotler et al., 2012] Kotler, P., Keller, K. L., Brady, M.
Marketing management, Pearson, Harlow, 2012.

[Mandl et al., 2011] Mandl, M., Felfernig, A., Tiihonen, J.,
& Isak, K. Status Quo Bias in Configuration Sys-
tems, Lecture Notes in Computer Science, No. 6703, pp.
105-114, 2011.

[Meyer and Lehnerd, 1997] Meyer, M. H., Lehnerd, A. P.
The power of product platforms: Building value and cost
leadership, Free Press, New York, 1997.

[Oriani and Sobrero, 2008] Oriani, R., Sobrero, M. Uncer-
tainty and the market valuation of R&D within a real op-
tions logic, Strategic Management Journal, Vol. 29, No.
4, pp. 343-361, 2008.

[Pullen et al., 2012] Pullen, A., de Weerd-Nederhof, P. C.,
Groen, A. J., Fisscher, O. A. SME Network Characteris-
tics vs. Product Innovativeness: How to Achieve High
Innovation Performance”, Creativity and Innovation
Management, Vol. 21, No. 2, pp. 130-146, 2012.

[Rahim and Baksh, 2003] Rahim, A. R. A., Baksh, M. S. N.
The need for a new product development framework for
engineer-to-order products, European Journal of Inno-
vation Management, Vol. 6, No. 3, pp. 182-196, 2003.

[Slamanig and Winkler, 2011] Slamanig, M., Winkler, H.
An exploration of ramp-up strategies in the area of mass
customisation, International Journal of Mass Customi-
sation, Vol. 4, pp. 22-43, 2011.

[Smith et al., 2012] Smith, Shana, Gregory Smith, and
Ying-Ting Shen, Redesign for product innovation", De-
sign Studies, Vol. 33, No. 2, pp. 160-184, 2012.

Tiihonen, J., Soininen, T., Männistö, T., Sulonen, R., State-
of-the-practice in product con-figuration - a survey of 10
cases in the Finnish industry. In Mäntylä, M., Finger, S.,
Tomiyama, T. Knowledge Intensive CAD, Vol. 1, pp.
95-114, TJ Press, Padstrow, 1996.

[Tseng and Jiao, 2001] Tseng, M., Jiao, J. Mass Customiza-
tion, Handbook of Industrial Engineering, Wiley, New
York, 2001.

[Ulman, 1997] Ullman, David G. The mechanical design
process, McGraw-Hill, Boston, 1997.

[Ulrich, 1995] Ulrich, K. T. The Role of Product Architec-
ture in the Manufacturing Firm, Research Policy, Vol.
24, No. 3, pp. 419-440, 1995.

[Vezzetti et al., 2011] Vezzetti, E., Moos, S., and Kretli, S.
A product lifecycle management methodology for sup-
porting knowledge reuse in the consumer packaged
goods domain, Computer-Aided Design, Vol. 43, No. 12,
pp. 1902-1911, 2011.

[Wang et al., 2009] Wang, H. S., Che, Z. H., Wang, M. J. A
three-phase integrated model for product configuration
change problems, Expert Systems with Applications,
Vol. 36, No. 3, pp. 5491-5509, 2009

 [Whitney, 1988] Whitney, D. E. Manufacturing by Design,
Harvard Business Review, Vol. 07-08, pp. 83-91, 1988.

116 Martin Bonev, Manuel Korell, Lars Hvam

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Towards Anomaly Explanation in Feature Models ∗

A. Felfernig1, D. Benavides2, J. Galindo2, and F. Reinfrank1

1Graz University of Technology, Graz, Austria
{alexander.felfernig, florian.reinfrank}@ist.tugraz.at

2University of Seville, Spain
{benavides,jagalindo}@us.es

Abstract
Feature models are a wide-spread approach to vari-
ability and commonality management in software
product lines. Due to the increasing size and com-
plexity of feature models, anomalies in terms of
inconsistencies and redundancies can occur which
lead to increased efforts related to feature model
development and maintenance. In this paper we in-
troduce knowledge representations which serve as
a basis for the explanation of anomalies in feature
models. On the basis of these representations we
show how explanation algorithms can be applied.
The results of a performance analysis show the ap-
plicability of these algorithms for anomaly detec-
tion in feature models. We conclude the paper with
a discussion of future research issues.

1 Introduction
Similar to component-oriented configuration models [Felfer-
nig et al., 2000; Felfernig, 2007], Feature Models (FM)
[Kang et al., 1990] are used to express variability properties
of highly-variant items [Mendonca and Cowan, 2010]. Ap-
plications based on feature models help users to decide about
relevant features and to learn about existing dependencies be-
tween features. Feature models can be distinguished with
regard to the expressiveness of constraints defining the re-
lationships between the different features contained in a fea-
ture model [Benavides et al., 2010]. So-called basic feature
models [Kang et al., 1990] will be used as a basis for the dis-
cussions in this paper. Such models allow the definition of
basic relationships between features, for example, a feature
f1 requires the inclusion of a feature f2. Cardinality-based
feature models [Czarnecki et al., 2005] extend basic ones by
also allowing cardinalities with an upper bound > 1. Finally,
extended feature models [Batory, 2005] allow the inclusion
of additional information about features in terms of feature
attributes. For presentation purposes we decided to use ba-
sic feature models (see Section 2). However, the presented

∗This work was supported, in part, by the Austrian Research Pro-
motion Agency under the project ICONE (827587), the European
Commission (FEDER), the Spanish Government under project SETI
(TIN2009-07366), and by the Andalusian Government under project
THEOS (TIC-5906).

concepts and algorithms can be applied to advanced feature
model representations as well.

Developing and maintaining large and potentially com-
plex feature models is an error-prone activity which can
be explained by the cognitive overload of software engi-
neers and domain experts [Trinidad et al., 2008; Benavides
et al., 2013]. In order to tackle this challenge, feature
model development and maintenance processes have to be
supported by intelligent techniques and tools which help to
identify anomalies which become manifest in different types
of inconsistencies and redundancies [Batory et al., 2006;
Benavides et al., 2010]. An approach to the identification
of dead features (features not part of any configuration) is
presented by Trinidad et al. [Trinidad et al., 2008]. The au-
thors also introduce concepts to solve the problem of void
feature models (no configuration exists that fulfills all the
constraints in the feature model). For the identification of
faulty relationships in the feature model (in these scenarios)
the authors define a corresponding diagnosis task which is
based on the concepts introduced by [Reiter, 1987]. As an
alternative to the approach of [Trinidad et al., 2008], White
et al. [White et al., 2010] show how to transform feature
models into a corresponding representation of a constraint
satisfaction problem (CSP) [Tsang, 1993]. On the basis of
this representation, diagnoses are directly determined by the
constraint solver without the support of an additional diag-
nostic engine. An overview of analysis operations (for the
identification of different inconsistencies and redundancies)
for feature models is provided in [Benavides et al., 2010;
von der Massen and Lichter, 2004].

If we are interested in minimal explanations (diagnoses) for
feature model anomalies, the performance of the underlying
algorithms becomes a challenge. An example explanation in
this context would be the minimal set of constraints which
have to be adapted or deleted from an inconsistent feature
model (the determination of a configuration is not possible)
such that the remaining constraints allow the calculation of
at least one configuration. Reiter [Reiter, 1987] introduced
a hitting set based approach to the determination of minimal
explanations (diagnoses) – these diagnoses are also of mini-
mal cardinality since diagnosis search is performed on the ba-
sis of breadth-first search. The idea of applying the concepts
of model-based diagnosis to inconsistent constraint sets has
first been introduced by Bakker et al. [Bakker et al., 1993].

Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank 117

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Felfernig et al. [Felfernig et al., 2004] continued this work
by introducing an approach to the automated testing and de-
bugging of configuration knowledge bases where test cases
are used to induce conflicts in the knowledge base. These
conflicts are then resolved on the basis of the hitting set algo-
rithm [Reiter, 1987]. First experiences from the application
of these testing and debugging approaches in industrial sce-
narios are reported by Fleischanderl [Fleischanderl, 2002].
Junker [Junker, 2004] introduced the QuickXPlain (QX) al-
gorithm. QX is an efficient divide-and-conquer based ap-
proach to the determination of minimal conflicts which can
then be exploited for the determination of diagnoses. In this
paper we show how diagnosis and redundancy detection algo-
rithms can be applied to support feature model analysis oper-
ations [Benavides et al., 2010]. In this context we show how
to apply the diagnosis algorithm FASTDIAG [Felfernig et al.,
2012] (an algorithm with no need of determining conflict sets)
and introduce the FMCORE algorithm which allows the de-
tection of redundancies in feature models.

The work presented here is in the line of research dedicated
to the development of intelligent quality assurance mecha-
nisms for configuration knowledge bases [Felfernig et al.,
2004]. The major contributions of this paper are the follow-
ing. First, we advance the state of the art in feature model
anomaly detection by formalizing the anomaly types dis-
cussed in the feature modeling community on the basis of the
concepts of inconsistency and redundancy. Second, we intro-
duce the FMCORE algorithm for the detection of redundant
constraints in feature models. Furthermore, we show how to
apply the FASTDIAG algorithm [Felfernig et al., 2012] for ex-
plaining different types of inconsistencies in feature models.
All anomaly types will be discussed in detail in Section 3 in
combination with corresponding explanation approaches.

The remainder of this paper is organized as follows. In
Section 2 we introduce a simple feature model (operating sys-
tem configuration) which will be used as working example
throughout the paper. Furthermore, we introduce the def-
initions of a feature model configuration task and a corre-
sponding feature model configuration. In Section 3 we in-
troduce different relevant forms of anomalies in feature mod-
els together with their formal definitions. The corresponding
anomaly detection algorithms FASTDIAG and FMCORE are
explained in Section 4. The performance of these algorithms
is analyzed in Section 5 on the basis of selected feature mod-
els from the S.P.L.O.T.1 repository. A discussion of further
research issues and a conclusion is provided in Section 6.

2 Feature models
A feature model (FM) defines a set of possible products
of a domain in terms of features and the relationships be-
tween them [Wang et al., 2010]. Features are arranged hi-
erarchically (tree structure with one so-called root feature fr
(fr = true)) [Benavides et al., 2010] where the nodes are the
features and the edges are relationships (constraints) [Segura
et al., 2010]. For a more detailed overview of different feature
model representations we refer the reader to [Batory, 2005;
Benavides et al., 2010].

1See www.splot-research.org.

Semantics of Feature Models. Our representation of FMs
is based on the notation introduced in [Benavides et al.,
2010]. Relationships (constraints) in FMs are represented
in terms of six different types of constraints [Batory, 2005;
Benavides et al., 2010; Segura et al., 2010]: mandatory, op-
tional, alternative, or, requires, and excludes. FMs are rep-
resenting configurable products which can be formalized in
the form of a constraint satisfaction problem (CSP) [Tsang,
1993] where each variable fi has the assigned domain di =
{true, false}. We define a feature model configuration task
as follows (see Definition 1).

Definition 1 (FM Configuration Task). A feature
model (FM) configuration task is defined by the triple
(F,D,C) where F = {f1, f2, ..., fn} is a set of features
fi, D = {dom(f1), dom(f2), ..., dom(fn)} (dom(fi) =
{true, false}) is the set of corresponding feature domains,
and C = CR ∪ CF is a set of constraints restricting the
possible configurations which can be derived from the fea-
ture model. In this context, CR = {c1, c2, ..., ck} repre-
sents a set of requirements (of a specific user) and CF =
{ck+1, ck+2, ..., cm} a set of feature model constraints.

On the basis of this definition of an feature model configu-
ration task, we now introduce the definition of a configuration
for a feature model (FM) configuration task (Definition 2).

Definition 2 (FM Configuration). A feature model (FM)
configuration for a given FM configuration task is a complete
assignment of the variables fi ∈ F . Such a configuration is
consistent iff the constraints ci ∈ C are not contradicting with
the variable assignment. Furthermore, an FM configuration is
valid, if it is consistent and complete.

Feature Model Constraint Types. Six basic types of
constraints can be included in CF [Benavides et al., 2010].
These constraint types are the following – their representation
in a graphical feature model is shown in the example of Fig-
ure 1. In the following we introduce the semantics of these six
types of constraints – this semantics is based on the definition
given in [Benavides et al., 2010].

Figure 1: Feature model (FM) with faulty model elements.

Mandatory: a feature f2 ∈ F is mandatory if it is in a
mandatory relationship with another feature f1 ∈ F . This
means, if f1 is part of the configuration, f2 must be part of
the configuration as well (and vice-versa). The formalization
of this constraint type (relationship) is realized on the basis
of an equivalence: f1 ↔ f2. In Figure 1 the feature gui is a
mandatory feature connected to the feature ubuntu.

118 Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Optional: a feature f2 ∈ F can (but must not) be included
in the configuration in the case that feature f1 ∈ F is part of
the configuration. This type of constraint can be formalized
on the basis of an implication: f2 → f1. In Figure 1 the
feature games is an optional feature connected to ubuntu.

Alternative: only one feature fb ∈ F = {f1, f2, ..., fk}
can be selected if feature fa is selected. The property can be
formalized as follows: f1 = true↔ (f2 = false∧...∧fk =
false∧ fa = true)∧ ...∧ fk = true↔ (f1 = false∧ ...∧
fk − 1 = false ∧ fa = true). In Figure 1 an example of a
feature fa is games, the subfeatures are gnuchess and glchess.

Or: at least one feature fb ∈ F = {f1, f2, ..., fk} must
be part of the configuration if feature fa is part of the con-
figuration. This property can be formally defined with fa ↔
{f1, f2, ..., fk}. In Figure 1 an example of a feature fa is gui,
the subfeatures are kde and gnome.

Requires: a feature f2 must be included in a configuration
if feature f1 is included. This requires relationship can be
defined with f1 → f2. In Figure 1 an example of a requires
relationship is games→ gui.

Excludes: it is not allowed to combine two features f1 and
f2 in the same configuration, i.e., feature f1 excludes feature
f2 and vice versa: ¬(f1 ∧ f2). In Figure 1 an example of
an excludes relationship is ¬(bash ∧ gui). Note that this is a
possible faulty constraint to be detected by diagnosis.

Requires and excludes constraints are also denoted as
cross-tree constraints. Finally, the set CR (customer require-
ments) is an additional set of constraints to be taken into ac-
count when determining configurations (solutions). The set
CR specifies a set of key features which have to be included
in the FM configuration for a specific user (customer).

Example Feature Model. A simple example feature
model (from the domain of operating systems) is depicted in
Figure 1. This model specifies a set of features relevant for
configuring an ubuntu operating system installation together
with constraints between the features. Note that faulty ele-
ments (constraints) are contained in this model – our goal in
the remainder of this paper will be to introduce algorithms
which help to identify and explain such faulty constraints.

The CSP-based representation [Tsang, 1993] of the feature
model shown in Figure 1 is the following - a representation
as FM configuration task = (F,D,C=CR ∪ CF).
• F = {ubuntu, texteditor, bash, gui, games, gedit,
vi, kde, gnome, gnuchess, glchess}
• D = {dom(ubuntu) = {true, false}, dom(text−
editor) = {true, false}, dom(bash) = {true,
false}, dom(gui) = {true, false}, dom(games)
= {true, false}, dom(gedit) = {true, false},
dom(vi) = {true, false}, dom(kde) = {true, false},
dom(gnome) = {true, false}, dom(gnuchess) =
{true, false}, dom(glchess) = {true, false}
• CR = {c0: ubuntu = true}
• CF = { c1 : ubuntu ↔ texteditor, c2 : ubuntu ↔
bash, c3: ubuntu ↔ gui, c4: games → ubuntu, c5:
texteditor ↔ gedit ∨ vi, c6: ¬texteditor ∨ ¬bash,
c7: ¬bash ∨ ¬gui, c8: gui ↔ kde ∨ gnome, c9:
games→ gui, c10: (gnuchess↔ ¬glchess∧ games)
∧ (glchess↔ ¬gnuchess ∧ games)}

3 Anomaly Patterns in Feature Models
Anomalies can be defined as patterns in data that do not con-
form to a well defined notion of normal behavior [Chandola
et al., 2009]. Trinidad et al. [Trinidad et al., 2008] are us-
ing the term error for incorrect definitions of relationships,
i.e., the set of products described by a feature model does
not match the SPL (software product line) it describes. We
interpret anomalies in the sense of [Trinidad et al., 2008]:
undesirable FM properties in terms of different facets of con-
tradictory and redundant information contained in the FM.

Handling Inconsistencies. Inconsistent feature models in-
clude contradictory constraints ci ∈ C that can not be sat-
isfied at the same time, leading to no valid instances deriv-
able from FMs [Wang et al., 2010]. For a given FM con-
figuration task this means that no solution can be identi-
fied. In our working example (the FM of Figure 1) no so-
lution can be identified due to an inconsistent constraint set
C={c1, c2, ..., c10}.2 Inconsistent sets of constraints can be
defined on the basis of the concept of conflict sets [Junker,
2004] (see Definition 3).

Definition 3 (Conflict Set) A conflict set CS ⊆ C is a set
of constraints s.t. CS is inconsistent. CS is minimal iff there
does not exist a conflict set CS′ with (CS′ ⊂ CS).

Based on Definition 3, we can identify minimal sets of con-
straints CSi ⊆ C, such that CSi is inconsistent. As long as
there are conflicts in a given constraint set of a feature model,
no solutions for the underlying FM configuration task can be
identified. Our example feature model (see Figure 1) includes
two minimal conflict sets which are CS1 = {c1, c2, c6} and
CS2 = {c2, c3, c7}. Each of these sets is a minimal set such
that (1) no solution (configuration) can be identified and (2)
none of the subsets of CSi is inconsistent. As a consequence
(due to their minimality property) conflicts (represented by
conflict sets) can be resolved by simply deleting one con-
straint from the set.

The resolution of all conflicts (represented by conflict sets)
can be based on the determination of the corresponding hit-
ting sets (also denoted as diagnoses [Reiter, 1987]). The prob-
lem of identifying minimal sets of constraints which have to
be adapted or deleted from the feature model such that the re-
maining constraints become consistent can be represented as
an FM diagnosis task (see Definition 4).

Definition 4 (FM Diagnosis Task) A feature model di-
agnosis task (FM diagnosis task) is a tuple (S, AC) where
S ⊆ AC are constraints of the feature model. The task is to
identify a minimal set of constraints which have to be deleted
from S s.t. consistency can be restored in the feature model.

In this context, S helps us to focus our diagnostic activities,
i.e., to focus on those model parts where we suspect faulty
constraints. If no such suspects exist, S can be set to AC. An
FM diagnosis, i.e., a solution to an FM diagnosis task can be
defined as follows (see Definition 5).

Definition 5 (FM Diagnosis) A feature model diagnosis
(FM diagnosis) is a set of constraints ∆ ⊆ S with AC −∆ is
consistent. ∆ is minimal iff there does not exist a set ∆’ with
∆’ ⊂ ∆ and ∆’ has the diagnosis property as well.

2Note that we interpret the constraint c0 : ubuntu = true as
element of the (customer) requirements CR.

Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank 119

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

The diagnoses for our example FM diagnosis task are
∆1 = {c1, c3}, ∆2 = {c1, c7}, ∆3 = {c2}, ∆4 = {c3, c6},
∆5 = {c6, c7}. These represent five ways to delete (adapt)
constraints from (in) the feature model such that at least one
configuration can be determined. The calculation of all ∆i is
sketched in Figure 2. The underlying assumption in this ex-
ample is that – conform to the algorithm introduced by Reiter
[Reiter, 1987] – the search tree (hitting set directed acyclic
graph – HSDAG) is expanded in breadth-first manner.

Figure 2: Determination of diagnoses for a given inconsistent
feature model (FM). The following discussion of anomaly
types assumes that ∆5 = {c6, c7} was chosen.

One possible approach to determine the complete set of
diagnoses is based on the hitting set directed acyclic graph
(HSDAG) algorithm introduced by Reiter [Reiter, 1987]. The
basic idea of this algorithm is to determine a conflict (in the
example CS1 : {c1, c2, c6}) and then to resolve this conflict.
If this conflict is resolved (e.g., by deleting the constraint c1)
the algorithm checks whether further conflicts exist in the fea-
ture model. In our example this is the case and the next deter-
mined conflict set is CS2 : {c2, c3, c7}. If we delete, for ex-
ample c3 from CS2, we receive the diagnosis ∆1 = {c1, c3}.
In a similar fashion all other diagnoses can be determined.
Note that {c1, c2} is not a (minimal) diagnosis since {c2} is
already a diagnosis. The HSDAG algorithm is a traditional
way of determining diagnoses – more efficient approaches
will be presented in Section 4.

Feature Model Anomaly Patterns. We can now discuss
in more detail different basic types of feature model anoma-
lies. Ways to explain these anomalies and related algorithms
will then be discussed in detail in Section 4. An overview
of these anomalies and related property checks is shown in
Table 1. The following types of anomalies are taken from
Benavides et al. [Benavides et al., 2010].

Void feature model. If model constraints in CF are in-
consistent (inconsistent(CF ∪ c0)), we are interested in so-
lutions to the FM diagnosis task (S=CF, AC = CF ∪ c0).
In this case we want to figure out which are the minimal
sets of constraints that are responsible for the given incon-
sistency in the feature model. We do not include c0 (e.g.,
c0 : ubuntu = true) in the set S since we are not interested
in changing this constraint. The feature model of our example
(see Figure 1) is an example of a void feature model.

Note that for the following discussions we assume that
∆5 = {c6, c7} (see Figure 2) has been chosen by the engi-

neer and {c6, c7} have been deleted from the feature model.
Dead feature fi. If a feature fi is not included in any of the

possible configurations (i.e., inconsistent(CF ∪ fi = true)),
we are interested in solutions to the FM diagnosis task (S =
CF, AC = CF ∪ {c0} ∪ {fi = true}). This way we are
able to figure out the minimal sets of constraints that are re-
sponsible for the non-acceptance of fi. In our working ex-
ample, there is no such dead feature (assuming that the con-
straints in ∆5 have been deleted from the feature model). If
we would substitute the constraint c9 : games → gui with
c9 : ¬gui ∨ ¬games, the feature games would be a dead
feature. If we then want to make games a feature which is
included in at least one configuration, the diagnoses for (S =
CF, AC = CF ∪ {c0} ∪ {games = true}) are ∆1 = {c3}
and ∆2 = {c9}.

Conditionally dead feature fi. Such a feature fi is not
included in all of the possible configurations, i.e., consis-
tent (CF ∪ {c0} ∪ {fi=false}) and consistent (CF ∪ {c0} ∪
{fi=true}). If we want to have fi in each configuration, we
have to add {fi = true} to the set CF. In our working exam-
ple, games is a conditionally dead feature since there are also
solutions with no inclusion of this feature. In order to make
games part of every possible feature model configuration, we
have to make this clear in the feature model. One way to
achieve this would be to convert constraint c4 into a manda-
tory constraint – this would have the same effect as adding
games = true as an additional constraint to CF.

Full mandatory feature fi. A feature fi is fully mandatory
if it is included in every possible solution (configuration), i.e.,
inconsistent(CF ∪ {c0} ∪ {fi = false}). If we want to adapt
the feature model in such a way that it also allows fi to be not
included, we can determine the corresponding (minimal) sets
of responsible constraints by solving the FM diagnosis task
(S=CF, AC= CF ∪ {c0} ∪ {fi = false}). In our working
example, the feature gui is a full mandatory feature since it
is part of every possible configuration. If we want to allow
configurations where gui is not included, the only diagnosis
for (S=CF, AC= CF ∪ {c0} ∪ {gui = false}) is ∆1 = {c3}.

False optional feature fi. A false optional feature fi is in-
cluded in all configurations (e.g., products of a product line)
although it has not been modeled as mandatory. If we replace
the constraint c9 : games → gui with c9 : gui → games,
the feature games becomes a false optional feature since it is
included in every possible configuration. An alternative in-
terpretation of a false optional feature focuses on the optional
relationship between a feature fpar and fopt. If the consis-
tency check of (CF ∪ {c0} ∪ {fpar = true∧ fopt = false})
returns false (and fpar = true), the feature fopt is not an op-
tion. In our example (under the assumption that c9 is adapted
as mentioned), the diagnosis for (S = CF, AC = CF ∪ {c0} ∪
{ubuntu = true ∧ games = false}) is ∆1 = {c3}.

Redundant constraint ci. In our working example the con-
straint c9 : games → gui is redundant since gui is a full
mandatory feature. If we check the consistency of {CF - {c9}
∪ ¬CF}we see that c9 is redundant since the expression is in-
consistent. In other words, CF - {c9} |= c9, i.e., c9 logically
follows from CF - {c9} – therefore it is redundant. The sec-
ond redundant constraint in our working example is c4 since
the feature ubuntu is a full mandatory feature as well. Con-

120 Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Analysis operation Property Check Explanation (Diagnosis Task)
Void feature model inconsistent(CF ∪ {c0})? FASTDIAG(CF,CF ∪ {c0})
Dead (fi) inconsistent(CF ∪ {c0} ∪ {fi=true})? FASTDIAG(CF,CF ∪ {c0} ∪ {fi = true})
Conditionally consistent(CF ∪ {c0} ∪ {fi=false}) and CF← CF ∪ {fi=true}
dead (fi) consistent(CF ∪ {c0} ∪ {fi=true})?
Full mandatory (fi) inconsistent(CF ∪ {c0} ∪ {fi=false})? FASTDIAG(CF,CF ∪ {c0} ∪ {fi = false})
False optional (fopt) inconsistent(CF ∪ {c0} ∪ FASTDIAG(CF, CF ∪ {c0} ∪

{fpar=true ∧ fopt=false})? {fpar = true ∧ fopt = false})
Redundant (ci) inconsistent((CF ∪ {c0} - {ci}) ∪ ¬(CF ∪ c0))? ci /∈ FMCORE(CF ∪ {c0})

Table 1: Feature model analysis operations, property checks, and related explanations. For example, figuring out whether a
feature model is void (no solution can be found) can be determined on the basis of a consistency check inconsistent (CF ∪
{c0}). A related explanation can be determined by solving the FM diagnosis task (CF, CF ∪ {c0}). The related diagnosis
(FASTDIAG) and redundancy detection algorithm (FMCORE) are discussed in Section 4.

sequently, the constraints {c4, c9} can be deleted from the
feature model without changing the underlying semantics.3

In the following section we focus on the presentation of
two algorithms which help to determine explanations for the
different feature model anomaly patterns.

4 Explaining Anomalies
The two basic algorithms for determining diagnoses and
redundancies are FASTDIAG and FMCORE. FASTDIAG
[Felfernig et al., 2012] is a divide-and-conquer algorithm
that supports the efficient determination of minimal diagnoses
without the need of having conflict sets available. FMCORE
is an algorithm which focuses on the determination of mini-
mal cores, i.e., redundancy-free subsets of a constraint set.

Determination of Diagnoses. In FASTDIAG (see Algo-
rithm 1), the set S represents the set of constraints where a
diagnosis should be searched, The set AC contains all con-
straints of the feature model. For example, if we want to
diagnose a void feature model (CF ∪ {c0} is inconsistent –
see Table 1), we would activate the algorithm with FAST-
DIAG(CF,CF ∪ {c0}), i.e., S = CF and AC = CF ∪ {c0}.
We do not include c0 in the set of diagnosable constraints
since c0 (the root constraint) is assumed to be correct (e.g.,
c0 : ubuntu = true). First, the algorithm (see Algorithm
1) checks whether the considered constraint set can be diag-
nosed (if the set S is empty, no diagnosis will be found) and
whether the constraints in AC-S are inconsistent (in this case
no diagnosis can be determined).

Algorithm 1 FASTDIAG(S, AC): ∆

if isEmpty(S) or inconsistent(AC − S) then
return ∅;

else
return DIAG(∅, S,AC)

end if

The major idea of FASTDIAG (and its subfunction DIAG
– see Algorithm 2) is to divide a set S of inconsistent con-
straints into two subsets S1 and S2. If the first part becomes

3Note that redundancies can also be intended to achieve goals
such as improving understandability or increasing efficiency – a dis-
cussion of related issues is outside the scope of this paper.

Algorithm 2 DIAG(D, S = {s1, ..., sr}, AC): ∆

if D 6= ∅ and consistent(AC) then
return ∅;

end if
if singleton(S) then
return S;

end if
k ← d r2e;
S1 ← {s1, ..., sk};S2 ← {sk+1, ..., sr};
∆1 ← DIAG(S2, S1, AC − S2);
∆2 ← DIAG(∆1, S2, AC −∆1);
return(∆1 ∪∆2);

consistent, the diagnosis is searched in the other part and the
first part can be omitted (no constraints part of the diagnosis
will be found there). If a singleton constraint of S triggers
an inconsistency, this constraint is considered a part of the
diagnosis. FASTDIAG determines exactly one diagnosis at
a time. If we want to determine more than one or even the
complete set of diagnoses, we need to combine FASTDIAG
with a corresponding algorithm that supports the construc-
tion of HSDAGs. The discussion of this approach is outside
the scope of this paper. We want to refer the reader to the
work of Felfernig et al. [Felfernig et al., 2012]. Compared
to traditional diagnosis approaches, FASTDIAG needs in the
worst case 2d× log2(n

d) + 2d consistency checks where d is
the number of constraints in the minimal diagnosis and n is
the number of constraints in S [Felfernig et al., 2012]. The
corresponding best case complexity in terms of the number of
consistency checks is log2(n

d +2d). A similar worst case (and
best case) complexity in traditional diagnosis approaches can
be expected for each determination of a conflict set (see, e.g.,
Figure 2) [Felfernig et al., 2012].

Determination of Redundancies. A constraint fi of a fea-
ture model (represented by the constraint set CF) is redundant
if its deletion from the model does not change the set of pos-
sible solutions. More formally, CF - {fi} |= fi which means
that fi logically follows from CF - {fi} and therefore is re-
dundant. An algorithm for redundancy detection should def-
initely not check redundancy properties on the basis of con-
crete configurations since such an approach becomes com-

Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank 121

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Feature Model: Car Selection #Variables: 72 #Constraints:96
Diagnoses Inconsistency Rate

2% (8 diagnoses) 5% (64 diagnoses) 7% (182 diagnoses)
FASTDIAG HSDAG FASTDIAG HSDAG FASTDIAG HSDAG

1 452 874 561 1888 858 5366
2 749 890 920 1891 1638 5382
3 1045 921 1294 2138 2059 5506
4 1373 936 1653 2143 2324 5522
5 1529 968 1872 2262 2464 5544
10 – – 2511 2418 2932 5709
20 – – 2964 2450 3806 6162
all 1632 1027 4383 3339 11856 8860

Table 2: Evaluation of FASTDIAG and HSDAG with the Car Selection feature model from S.P.L.O.T.

Feature Model: SmartHome V. 2.2 #Variables: 61 #Constraints:63
Diagnoses Inconsistency Rate

2% (8 diagnoses) 5% (12 diagnoses) 7% (77 diagnoses)
FASTDIAG HSDAG FASTDIAG HSDAG FASTDIAG HSDAG

1 297 920 312 952 577 2683
2 437 967 452 968 951 2684
3 609 983 592 983 1341 2686
4 734 998 733 1139 1762 2699
5 843 1014 842 1155 2090 2671

10 – – 967 1529 2792 2715
20 – – – – 3369 2746
all 1155 1061 1606 1545 6224 3151

Table 3: Evaluation of FASTDIAG and HSDAG with the SmartHome V 2.2 feature model from S.P.L.O.T.

pletely inefficient even in the case of simple feature models.
The basic idea of the FMCORE algorithm is to iterate over
the given set of constraints (S) and for each constraint ci ∈ S
to check whether the deletion of ci changes the semantics of
S. The assumption is that if ci is non-redundant, its deletion
from S will change the semantics of S, i.e., S −{ci} ∪ S be-
comes consistent. All these individual redundant constraints
are deleted from Stemp (a temporal copy of S). Finally, the
algorithm returns the set Stemp which represents a minimal
core, i.e., the original set S without redundant constraints.

Note that – instead of checking the inconsistency of CS −
{ci} ∪ S (see, e.g., [Felfernig et al., 2011]) – FMCORE sys-
tematically reduces the number of constraints to be checked
in S. Given a configuration knowledge base S and its com-
plement S, the (in)consistency check of S−{ci} ∪ S can be
reduced to the inconsistency check of S − {ci} ∪ S′ where
S′ = {¬ci}. If we assume that S = {c1∧c2∧..∧cm∧cm+1∧
..∧cn}, S = {¬c1∨¬c2∨ ..∨¬cm∨¬cm+1∨ ..∨¬cn}, and
γ = {cm+1∧ ..∧cn} then the consistency check of S−γ∪S
can be reduced to {c1∧c2∧ ..∧cm}∪{¬cm+1∨ ..∨¬cn}. In
FMCORE (Algorithm 3) this property is taken into account.

The number of consistency checks of FMCORE in the best
case equals the number of consistency checks in the worst
case – in both cases the number of consistency checks needed
is exactly n (the number of constraints in S).

In order to analyze the performance of FASTDIAG and
FMCORE we conducted a performance analysis for both al-

Algorithm 3 FMCORE(S): ∆

{S: the (redundant constraint set)}
{S: the complement of S}
{∆: set of redundant constraints}
Stemp ← S;
for all ci in Stemp do

if isInconsistent((Stemp − {ci}) ∪ {¬cj}) then
Stemp ← Stemp − {ci};

end if
end for
return Stemp;

gorithms on the basis of different feature models provided by
the S.P.L.O.T. repository. The results of this analysis are pre-
sented in the following section.

5 Performance Evaluation
For evaluation purposes we selected different feature models
offered by the S.P.L.O.T. repository: Car Selection (Table 2),
SmartHome V. 2.2. (Table 3), and Xerox (Table 4). In order
to evaluate the performance of FASTDIAG, we randomly in-
serted additional cross-tree constraints in the feature models
for inducing inconsistencies which could then be exploited
for determining minimal diagnoses. For a systematic eval-
uation we generated different versions of the (inconsistent)
feature models which differed in terms of their inconsistency

122 Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Feature Model: Xerox #Variables: 172 #Constraints:205
Diagnoses Inconsistency Rate

2% (140 diagnoses) 5% (84 diagnoses) 7% (55 diagnoses)
FASTDIAG HSDAG FASTDIAG HSDAG FASTDIAG HSDAG

1 1638 3354 1260 2996 1740 3023
2 2013 6646 1710 3167 2050 3203
3 2262 12106 1970 9454 2330 9544
4 2434 12355 2180 9536 2580 9654
5 2637 28111 2341 12044 2790 12165
10 3417 69950 2921 64631 3330 65240
20 4758 75317 3911 90715 5010 91726
all 46785 >100000 17301 >100000 10541 >100000

Table 4: Evaluation of FASTDIAG and HSDAG with the Xerox feature model from S.P.L.O.T.

Feature Model #Variables #Constraints Redundancy Rate Runtime (ms)
Car Selection 72 96 0.64 5070

SmartHome V. 2.2 61 63 0.29 1907
Xerox 172 205 0.71 3261

Table 5: Evaluation of FMCORE with selected S.P.L.O.T. feature models.

rate (see Formula 1) which was categorized in {2%, 5%, 7%}.
We used a random variable to control the degree of generated
inconsistencies (the number of conflicts) in a feature model.
As reasoning engine we used the CHOCO constraint solving
library.4 In order to import feature models to our environment
we implemented a parser that generated CHOCO knowledge
bases from S.P.L.O.T. SXFM based feature models.

Inconsistency Rate =
#conflicts in FM

#constraints in FM
(1)

The performance tests were executed within a Java appli-
cation running on a 64bit Windows 7 desktop PC using 8GB
RAM and an Intel(R) Core(TM) i5-2320 CPU with 3.0GHz.
Each run of the diagnosis algorithm for a specific setting
has been repeated 10 times were in each run the ordering of
the constraints was randomized. For each setting we eval-
uated the runtime (in ms) of both, the standard hitting set
based approach to the termination of diagnoses [Reiter, 1987]
(HSDAG) and FASTDIAG. As scenario we choose the diag-
nosis of void feature models where we induced different de-
grees of inconsistency (based on the inconsistency rate mea-
sure – see Formula 1). The upper bound for the evaluation
time was set to 100.000 ms – in the case that this upper limit
was exceeded, the search was stopped.

If one or a few diagnoses are required (which is typical
for interactive settings) then FASTDIAG outperforms the stan-
dard HSDAG approach in most of the cases. If all diagnoses
are required, for example, in situations where diagnoses are
computed offline, the standard HSDAG approach seems to be
the better choice. We want to emphasize that the presented di-
agnosis algorithms are independent of the underlying reason-
ing mechanisms, i.e., beside using a basic constraint-based
approach for supporting the reasoning tasks (mainly consis-
tency checking), description logics or SAT-based approaches

4www.emn.fr/z-info/choco-solver.

can be applied as well. Finally, we also evaluated the perfor-
mance of the redundancy detection algorithm FMCORE (see
Table 5). Our goal was to figure out for the selected feature
models to which extent the constraints in the feature models
are redundant. We measured redundancy in the terms of the
redundancy rate (see Formula 2).

Redundancy Rate =
#redundant constraints in FM

#constraints in FM
(2)

The outcome of this analysis was that all the investigated
feature models showed quite different degrees of redundancy
(see Table 5). However, we consider these as preliminary
results and further analyses have to be conducted, for exam-
ple, we are interested in intra-constraint redundancies and the
share of redundancy in cross-tree constraints with regard to
the overall number of constraints in the feature model.

Note that the FMCORE algorithm is especially useful in
situations where models are developed by one or a few en-
gineers. In this case the degree of redundant constraints in
the model is low. For scenarios with high redundancy rate,
alternative algorithms have already been developed (see, e.g.,
[Felfernig et al., 2011]).

6 Conclusions
In this paper we presented a consistency-based approach to
explaining anomalies in feature models. We introduced defi-
nitions which are useful for the explanation of anomalies and
discussed the corresponding algorithms which help to deter-
mine minimal diagnoses (FASTDIAG) and minimal sets of
non-redundant constraints (FMCORE). Our future work will
focus on: (1) The definition of further anomaly patterns in
alternative knowledge representations such as advanced fea-
ture models [Batory, 2005] and UML models [Felfernig et
al., 2000]. Due to higher expressiveness, these representa-
tions include further anomaly patterns such as multiplicity

Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank 123

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

bounds which can not represented by configurations, unsat-
isfiable preconditions in constraints, and unexplained incom-
patibilities. (2) The development of mechanisms for the auto-
mated generation of test cases for feature models. (3) Further
algorithms that enable the determination of diagnoses and re-
dundancies on an intra-constraint level. (4) Evaluation of the
developed algorithms with further benchmarks.

References
[Bakker et al., 1993] R. Bakker, F. Dikker, F. Tempelman,

and P. Wogmim. Diagnosing and solving over-determined
constraint satisfaction problems. In Proceedings of IJCAI-
93, pages 276–281. Morgan Kaufmann, 1993.

[Batory et al., 2006] D. Batory, D. Benavides, and A. Ruiz-
Cortes. Automated analysis of feature models: challenges
ahead. Comm. of the ACM, 49:45–47, 2006.

[Batory, 2005] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In H. Obbink and K. Pohl, edi-
tors, Software Product Lines Conference, volume 3714 of
LNCS, pages 7–20. Springer, 2005.

[Benavides et al., 2010] D. Benavides, S. Segura, and
A. Ruiz-Cortes. Automated analysis of feature models
20 years later: A literature review. Information Systems,
35:615–636, 2010.

[Benavides et al., 2013] D. Benavides, A. Felfernig,
J. Galindo, and F. Reinfrank. Automated Analysis in
Feature Modelling and Product Configuration. In 13th
International Conference on Software Reuse (ICSR 2013),
number 7925 in LNCS, pages 160–175, Pisa, Italy, 2013.

[Chandola et al., 2009] V. Chandola, A. Banerjee, and
V. Kumar. Anomaly detection: A survey. ACM Computing
Surveys, 41:15:1–15:58, July 2009.

[Czarnecki et al., 2005] K. Czarnecki, S.Helsen, and
U.Eisenecker. Formalizing Cardinality-based Feature
Models and their Specialization. SoftwareProcess:
Improvement and Practice, 10(1):7–29, 2005.

[Felfernig et al., 2000] A. Felfernig, G. E. Friedrich, and
D. Jannach. UML as Domain Specific Language for the
Construction of Knowledge-based Configuration Systems.
International Journal of Software Engineering and Knowl-
edge Engineering, 10(4):449–469, 2000.

[Felfernig et al., 2004] A. Felfernig, G. Friedrich, D. Jan-
nach, and M. Stumptner. Consistency-based diagnosis
of configuration knowledge bases. Artificial Intelligence,
152(2):213 – 234, 2004.

[Felfernig et al., 2011] A. Felfernig, C. Zehentner, and
P. Blazek. Corediag: Eliminating redundancy in constraint
sets. In 22nd International Workshop on Principles of Di-
agnosis, pages 219–224, Murnau, Germany, 2011.

[Felfernig et al., 2012] A. Felfernig, M. Schubert, and C. Ze-
hentner. An efficient diagnosis algorithm for inconsistent
constraint sets. AI for Engineering Design, Analysis, and
Manufacturing (AIEDAM), 26(1):53–62, 2012.

[Felfernig, 2007] A. Felfernig. Standardized configuration
knowledge representations as technological foundation for

mass customization. IEEE Transactions on Engineering
Management, 54:41–56, 2007.

[Fleischanderl, 2002] G. Fleischanderl. Suggestions
from the software engineering practice for applying
consistency-based diagnosis to configuration knowledge
bases. In 13th Intl. Workshop on Principles of Diagnosis
(DX-02), pages 33–35, Semmering, Austria, 2002.

[Junker, 2004] U. Junker. QuickXPlain: preferred explana-
tions and relaxations for over-constrained problems. In
Proceedings of the 19th National Conference on Artifical
Intelligence, AAAI 2004, pages 167–172. AAAI, 2004.

[Kang et al., 1990] K. Kang, S. Cohen, J. Hess, W. No-
vak, and S. Peterson. Feature-oriented Domain Analysis
(FODA) – Feasibility Study. TechnicalReport CMU – SEI-
90-TR-21, 1990.

[Mendonca and Cowan, 2010] M. Mendonca and D. Cowan.
Decision-making coordination and efficient reasoning
techniques for feature-based configuration. Science of
Computer Programming, 75(5):311 – 332, 2010. Coordi-
nation Models, Languages and Applications(SAC 2008).

[Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57–95, 1987.

[Segura et al., 2010] S. Segura, R. Hierons, D. Benavides,
and A. Ruiz-Cortes. Automated test data generation on
the analyses of feature models: A metamorphic testing ap-
proach. In 3rd Intl. Conference on Software Testing, Veri-
fication and Validation (ICST), pages 35–44, 2010.

[Trinidad et al., 2008] P. Trinidad, D. Benavides, A. Duran,
A. Ruiz-Cortez, and M. Toro. Automated error analysis
for the agilization of feature modeling. Journal of Systems
and Software, 81:883–896, 2008.

[Tsang, 1993] E. Tsang. Foundations of Constraint Satisfac-
tion. Academic Press, London, 1993.

[von der Massen and Lichter, 2004] T. von der Massen and
H. Lichter. Deficiencies in Feature Models. In T. Mannisto
and J. Bosch, editors, Workshop on Software Variability
Management for Product Derivation, 2004.

[Wang et al., 2010] B. Wang, Y. Xiong, Z. Hu, H. Zhao,
W. Zhang, and H. Mei. A dynamic-priority based approach
to fixing inconsistent feature models. In D. Petriu, N. Rou-
quette, and O. Haugen, editors, Model Driven Engineer-
ing Languages and Systems, volume 6394 of LNCS, pages
181–195. Springer Berlin, 2010.

[White et al., 2010] J. White, D. Benavides, D. Schmidt,
P. Trinidad, B. Dougherty, and A. Ruiz-Cortes. Automated
diagnosis of feature model configurations. Journal of Sys-
tems and Software, 83(7):1094–1107, 2010.

124 Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

	Foreword
	Toward automatically learned search heuristics for CSP-encoded configuration problems - results from an initial experimental analysis
	Choice Navigation Assessment for Mass Customization
	Applications of MaxSAT in Automotive Configuration
	Interactive Configuration of High Performance Renovation of Apartment Buildings by the use of CSP.
	Configuration Dynamics Verification Using UPPAAL
	Improving configuration and planning optimization: Towards a two tasks approach
	Recommender Systems for Configuration Knowledge Engineering
	Solving Object-oriented Configuration Scenarios with ASP
	Configuring Domain Knowledge for Natural Language Understanding
	The effect of sales configurator capabilities on the value perceived by the customer through the customization process
	Generation of predictive configurations for production planning
	Choice Navigation: Towards a Methodology for Performance Assessment
	What makes the Difference? Basic Characteristics of Configuration
	(Re-)configuration of Communication Networks in the Context of M2M
	New complex product introduction by means of product configuration
	Towards Anomaly Explanation in Feature Models

